

8K ON BOARD MEMORY!
5 K RAM 3 K ROM or 4 K RAM 4 K ROM (link selectable) Kit supplied with 3 K RAM. 3 K ROM System expandable for up to 32 K memory

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code

GRAPHICS!

64 character graphics option - includes transistor symbols! Only £18 20 extra

MEMORY MAPPED

high resolution VDU circuitry using discrete TTL for extra flexibility. Has its own 2 K memory to give 32 lines for 64 characters

KANSAS CITY
low error cate tane interface

NEW LOW PRICE!

POWFRTRAKI

2 MICROPROCESSORS

280 the powerful CPU with 158 instruction including all 78 of the 8080 controls the MM57109 number cruncher Functions include,,+- , squares roots. logs ogxponentials trig functions, inverses etc Range 10^{-99} to $9 \times 19^{9 g}$ to 8 figures plus 2 exponent digits.

EFFICIENT OPERATION

Why waste valuable memory on sub routines tor numeric processing? The number cruncher handles everything internally

RESIDENT BASIC

With extended mathematical capability Only 2 K memory used but more powerful than
most 8 K Basics! most 8 K Basics

1 K MONITOR

resident in EPROM

SINGLE BOARD DESIGN
Even keyboards and power supply sided prated through-hole PCB

COMPLETE KIT NOW ONLY
 $\mathrm{E} 249+$ VAT

Kit also available as separate packs: $\theta . g$ PGB. Keyboards, Cabinet, etc.

POWERTRAN

PSI Comp 80.Z80 Based powerful scientific computer Design as published in Wireless World April - September 1979

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction. IC sockets. high reliability metal oxide resistors, power supply using custom designed toroidal transformer. 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc

PSI COMP 80 Memory Expansion System
 Expansion up to 32 K all inside the computer's own cabinetl

By carefully thought out engineering a mother board with buffers and its own power supply (powered by the computers transformer) enables up to 38 K RAM or 8 K ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a ribbon cable. Mother Board Fibre glass double sided plated through hole P.C.B. $8.7^{\circ} \times 3.0^{*}$ set of all components including all brackets, fixing parts and ribbon cable with socket to connect to expansion plug

8K Static Fibre glass double sided plated through hole P.C.B.
RAM Board $5.6^{\prime \prime} \times 4.8^{\prime \prime}$

Set of components including IC sockets, plug and socket but excluding RAMs.

2114L RAM (16 required)
Complete set of board, components, 16 RAMS
8K Fibre glass double sided plated through hole P.C.B. ROM Board $\quad 5.6^{\prime \prime} \times 4.8^{2}$

Set of components including IC sockets, plug and socket but excluding ROMs

2708 ROM (8 required) £39.90 Complete set of board, components, 8 ROMs

PCB size $16.0^{\prime \prime} \times 12.5$
UK Carriage FREE
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PURTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3MN

 VOL. 1 No. 11
 JAN. 1980

 Editor: Ron Harris B.Sc
 Ed, Assistant: Henry Budgett
 Art Dirsetor: Diego Rincon
 Production: Deo Camillori, Loraine Redmore, Paul Edwards, Tony Strakas, Joanne Barsoghlan.
 Ad. Managar: Chris Surgenor Ad. Reprosentative: David Sinfield Editorial Director: Halvor Moorshesd

NEWS

We peruse the latest produce
PROBLEM PAGE10

Taking a knight on tour
LABYRINTH14

A truly amazing game
PRINTOUT22

Your views expressed
SLIDE PROJECTOR CONTROL
Add intelligence to your holiday snaps
SCMP ADDRESS31

Making programming easier for you
SOFTSPOT32Your program ideasBASIC SERIES36
The final part
MARITIME STRIKE 42
Calculate the odds on winning
MPU'S BY EXPERIMENT 50
We take a close look at the Mk14
POWER SUPPLY 56A multipurpose supply for your microPONTOON62
Bluff your micro
QUICK KEYBOARD 69Update for the Mk14 keyboard
CLUB SURVEY75

The latest on your local
ETI Next Month 12 : Subscriptions 25 : Instant Software 40 : Marketplace 49 : CT Carryover 55 :
Book Service 60 : Ad Index 68.

SIXTEEN BITS FOR THE CLASSROOM

 Two development systems for the TM990 range of micro's are now being stocked by Celdis. The 189M version is called the University module and is intended for the classroom or electronics laboratory environment. Equipped with RAM, PROM, sixteen bit 1/O, alpha-numeric keypad and display as well as the ubiquitous RS232 interface for terminal connection.Included with the package is a 500 page tutorial manual and a 200 page user manual giving vital details on the cassette

EYE SEE, IC

Petsoft are starting to make deliveries of the Toolkit which we reviewed a month or so ago. The delay is simply due to the fact that so many of you have ordered them, supply and demand equals overload. Shipments are getting through so please don't fret. For those of you who are recent converts the Toolkit is a 2 K ROM package that plugs directly into a 16 or

32 K PET and gives you a range of editing and debugging tools directly accessible through BASIC. For those of you with the old machines the ROM plugs onto the expansion port on a little PCB. The cost is $£ 55$ for the ROM or $£ 75$ for the plug-on version. The product is also Commodore approved, it certainly got our commendation as being a very useful piece of kit. For more info contact Petsoft at PO Box 9, Newbury, Berkshire.
or 101 M systems or indeed any TM990 family as it is bus compatible. The module allows the
interface and the on-board monitor and assembler. The price for a one-off is $£ 256$, not unreasonable by comparison with some of the lesser equipped eight bit systems. The second module is the Software Development Module which can be used the 100 M
editing, assembly and debugging of programs and has dual cassette interfaces for dumping and loading your developed software. For further details contact Celdis Microsystems at $37 / 39$ Loverock Road, Reading, Berkshire.

CHRISTMAS CLEAROUT

Newbury will be the scene of frantic activity between December 15 th and 22 nd while Newbear are selling off a large range of ex demo equipment at bargain prices. The offers are available only to personal callers at the Newbury and Manchester stores so get down there soon or you'll miss out on the bargain prices.

TAKING THE COURSE

A new degree course has been introduced by the University of Leicester called Physics with Microelectronics and Computing. Rather than giving a course solely in Microprocessors they have chosen to include some of everything, hopefully leading to a less specialised course. The ideal graduate should be not only happy in the research environment but also in this environment. The first intake will be in October 1980 and the course lasts for three years with a B.Sc at the end. Full details can be obtained from the Dept of Physics at the University, University Road,

EXTEL EXCEL

A mini disc system with full editing facilities has been launched by the Exchange Telegraph Company. The device is RS232 compatible for easy connection to any system and uses Shugart drives to hold over 200K. Facilities offered include global searches, string searches and freespace indication as well as the usual editing functions. All the operating software is built in with a micro and the unit will self initialise your disc automatically which eliminates the need for pre-formatting. The unit costs a hefty $£ 1281$ and further details are available from Extel Engineering Division at 73/75 Scrutton Street, London EC2A 4PB.

Leicester LE1 7RH.

The Perfect Lead... Acorn Microcomputer System 1

Price $\mathbf{f 6 5}$ plus VAT in kit form
This compact stand-alone microcomputer is based on standard Eurocard modules, and employs the highly popular 6502 MPU (as used in APPLE, PET, KIM, etc). Throughout, the design philosophy has been to provide full expandability, versatility and economy.

Specification
The Acorn consists of two single Eurocards.

1. MPU card

6502 microprocessor
512×8 ACORN monitor $1 \mathrm{~K} \times 8$ RAM
16-way I/O with 128 bytes of RAM
1 MHz crystal
5 V regulator, sockets for
2K EPROM and second RAM I/O chip.
2. Keyboard card

25 click-keys (16 hex, 9 control)
8 digit, 7 segment display CUTS standard crystal controlled tape interface circuitry.
Keyboard instructions:
Memory Inspect/Change (remembers last address used)
Stepping up through memory
Stepping down through memory

Set or clear break point Restore from break
Load from tape
Store on tape
Go (recalls last address
used)
Reset
Monitor features
System program
Set of sub-routines for use in programming
Powerful de-bugging facility displays all internal registers Tape load and store routines

Applications

As a self teaching tool for beginners to computing. As a low cost 6502 development system for industry. As a basis for a powerful microcomputer in its expanded form.
As a control system for electronics engineers.
As a data acquisition system for laboratories.

START WITH SYSTEM 1 AND CONTINUE AS AND WHEN YOU LIKE

Acorn Memory 8 k £95 plus VAT (kit form)

Acorn Controller

 $£ 35$ plus VAT (min config.)
Acorn VDU

Acorn Computers Ltd.
4A Market Hill, Cambridge, Cambs.
Cambridge (0223) 312772.
£88 plus VAT (kit form)

Acorn Software in ROM
(qty) Acorn Microcomputer kit @ $£ 65$ plus $£ 9.75$ VAT.
(qty) Acorn Memory kit @ $£ 95$ plus $£ 14.25$ VAT.
(qty) Acorn VDU kit @ $£ 88$ plus $£ 13.20$ VAT.
(qty) Acorn Power Supply (for System 1 only) @ $£ 5.95$ plus £0.89 VAT.
\square (qty) Acorn Microcomputer assembled and tested @ $£ 79$ plus $£ 11.85$ VAT.
\square (qty) Acorn VDU assembled and tested @ $£ 98$ plus $£ 14.70$ VAT.

Acorn Computers Ltd. 4A Market Hill, Cambridge, Cambs. (0223) 312772. Regd. No. 1403810

SWOPPABLE VISUAL DISPLAY

A new VDU has been introduced by Pragma called the Visual 200. Featuring all the usual goodies such as detach. able keyboard, numeric pad and user definable function keys. The range of facilities provided is topped by the provision of an Emulator switch which can be
set to mimic a variety of VDU's such as Hazeltine's 1500, the ADDS' 520 and the DEC VT-52 among others. The system has a solid state keyboard and a single PCB which should add to the reliability of the unit and the VDU performs its own diag nostics on power-up. Interface is by the standard RS232 at a range of baud rates from 110 to 19,200 with full or half duplex operation. For more of the nitty gritty on the unit contact Pragma at Middlesex House, 29 High Street, Edgware, Middlesex.
had an abundance of enquiries concerning our Star Trek program. There are a number of small errors unfortunately, these are:-

1030 IF $(W>1)+(W>63)$ GOTO 1020
1035 IF E W GOSUB 8300; GOTO 600
$1100 \mathrm{U}=1 ; \mathrm{V}=\mathrm{V}+\mathrm{N} ; \mathrm{H}=\mathrm{H}+\mathrm{M}$ 8020 IF G*G>(Z*Z+Y*Y) RETURN
8500 INPUT 'COURSE $(0-7)^{\prime} B$
The puzzle set by line 1135 is a red herring, it will work on Triton because U is a logical variable. For other machines use:-

IF $\mathrm{U}=1$ THEN.
Because the program was written in Integer BASIC you may well have to adjust the movement variables to avoid rambling all round the galaxy, try adding 0.5 and then taken the INT value. On some machines you will need to combine lines 3080 and 3085 to avoid subroutine return problems. Triton uses only one array and it calls it @ so you can change this to a suitable letter, such as A, throughout. You will also need to change the \# sign to $<>$ throughout except where it occurs in a PRINT statement. In this case the \#N defines the space required to print a variable on the screen, adjust or remove this to suit. And finally , the + sign between brackets in an IF. . .THEN type statement is generally a logical OR not add. By the way we have taken note of the 0 (zero) or 0 problem, 0 appears as the torpedo counter in lines 70, 510,4000 and 4013. Good hunting!

HIGH SPEED CONVERTER

Amplicon have introduced two new high speed analogue to digital converters that handle 16 bits in 100 microseconds. The second model handles 14 bits in a mere 50 microseconds. Both offer a high degree of stability and accuracy, as is to be expected at the prices of $£ 383$ and £298 for sixteen and fourteen bits respectively. Amplicon can be contacted at Lior Mews, Hove BN3 5RA or give them a bell on 0273-720716.

PET BOOK SELL OUT

The first edition of PET for Beginners has sold out. Don't fret though, it has been amended and re-published. The book is not a guide to the BASIC language but is most useful to those with PET's and deals with the facilities available on that machine. Our office copy is well used and liked so it should be a good buy for those of you who are into Petting! The booklet costs $£ 1$ and can be ordered from PETFOLIO, Innisbeag, Blackhill, Coleraine, N.Ireland BT51 4EU.

VECTORED BYTE

The Byte shop and Computerland have got their hands on the Vector Graphics Memorite system just in time for Compec. The system comprises the Vec-

the full 96 ASCII character set, up to eight character sizes it has both parallel and serial interfaces and prints at 95 CPS with formats of six or eight lines per inch and 80 or 132 columns. Cost $£ 585$.

A ROARING SUCCESS?

A new, low cost printer is now marketed by Microsense Computers of Finway Road, Hemel Hempstead, Herts. Featuring
course run the usual range of languages and software packages that the Byte shop offer. For more details drop in to your local branch or write to 426 428 Cranbrook Road, Gants Hill, llford, Essex IG2 6HW.

\int_{6} It is, without doubt, a good basic kit offering good potential and facilities ... it represents one of the best value-for-money kits availablegy

Vincent Tseng -
Practical Computing, Jan. 1978.

65 The Nascom-1 $\mathbf{Z 8 0}$ based board computer must be a strong candidate for the most successful ever British

 computer y^{5}Martin Banks - Computer Weekly, 30th Nov. 1978.

©f Overall, the Nascom-1 is an excellent unit. I've been using my Nascom for about 5 months (it worked first time) and 1 am very happy indeed with it ${ }^{5}$
 Editor-
 Computing Today, Nov. 1978

Cf Nascom-1 is the best thing that's happened to the British
microcomputer industry-it was the product that set things
moving here
Comment by the Editor of
 Personal Computer World at the PCW Show, Sept. 1978.

This is what the media said about Nascom-1 when it was $£ 200$. Now, with over 15.000 systems in operation world-wide and the new low prices, the Nascom- 1 is an even better buy. And look what else you get
A $12^{\prime \prime} \times 8^{\prime \prime}$ PCB carrying 5LSI MOS packages, 161 KMOS memory packages and 33 TTL packages. There is on-board interface for UHF or unmodulated video and cassette or teletype.

The 4 K memory is assigned to the operating system, video display and EPROM option socket, leaving 1 K of user RAM. The MPU is the standard Z80 which is capable of executing 158 instructions including all 8080 code.

The prices include a ready-built 48-key LICON keyboard.

NASCOM UK DISTRIBUTORS

ADDA COMPUTERS	COMPUTERLAND	COMP SHOP
Ealing, London W5.	Nottingham.	New Barnet, Herts.
Tel:01-579 5845	Tel:0602 40576	Tel:01-441 2922
BITS \& P.C.S	Manchester 1.	COMPUTER MANIA
Wetherby.	Tel:061-2364737	Great Milton, Oxon.
Tel:093762592	Birmingham.	Tel:Great Milton 729
BUSINESS \& LEISURE	Tel:021-622 7149	C. C. ELECTRONICS
MICROCOMPUTERS	Glasgow.	Torquay.
Kenilworth.	Tel:041-221 7409	Tel:O803 22699
Tel:0926512127	TARGET ELECTRONICS	DATRON MICR0 CENTRE
THE BYTE SHOP	Bristol.	Sheffield.
IIford,Essex.	Tel:0272 421196	Tel:0742585490
Tel:01-5542177	THE CAMERA CENTRE	ELECTRONIC SERVICES
London W1.	Barrow-in-Furness.	Sheffield.
Tel:01-6360647	Tel:022920473	Tel:0742668767

ELECTROVALUELTD
INTERFACE
, Surrey.
 ELECTROVALUELTD Manchester M19. Tel:061-432 4945 ELEY ELECTRONICS Glenfield, Leics. Tel:0533871522 HAPPY MEMORIES Southampton. Tel:0703 39267 HENRY'S RADIO London W2. Tel:01-7231008

LOCK DISTRIBUTION PIPS COMPUTER
Oldham.Lancs. SERVICES Tel:061-6520431 Whitley Bay. MICRODIGITAL Liverpool L2. Tel:051-227 2535 PHOTO ACOUSTICS Watford, Herts. Tel:092332006

Tel:0632 482359
P\& 0 COMPUTERS
Belfast.
STRATHAND
Glasgow.
Tel:041-5526731

ANCIENT GREEK COMES HOME

Control Data have just announced plans for their new computer based education system called PLATO. The service will be obtainable from the existing seven Learning Centres that they run and a further four will be set up. Based on a dual Cyber 730 system which is being installed in North London and operated from a custom designed interactive terminal it is one of the finest systems I have seen. The first course to be offered over here will be a 60 hour session on Microprocessors. The terminal allows normal keyboard interaction as well as "touch screen" capability and a wide range of course material will be available soon including a course to teach you how to write courses! The price of the micro course is about $£ 500$ but this could be cut by installing your own terminals and writing your own material. I shall be taking a closer look at this system soon so watch this space. For more details contact Neil Spoonley at Control Data, 179/ 199 Shaftesbury Avenue, London WC2H 8AR.

APL MAPLE

For those of you who hanker after new vista's to conquer APL is now available on a micro system. Called MAPLE and produced by A.P.Limited it is based on a Z80/S100system with a full complement of 64 K of memory. The interpreter, written by Vanguard Systems, takes $32 \mathrm{~K}, 4 \mathrm{~K}$ is needed for the CP/M disk operating system and the remaining 28 K is left for the user. A complete system with a $12^{\prime \prime}$ VDU, twin floppies and a set of software will sell for under $£ 4000$. A variety of special features such as exchangeable ASCII and APL character sets and special APL editing keys are obtained by flicking a switch on the VDU making the system very easy to use. Traditional languages such as BASIC, PASCAL and FOR-

TRAN can be run on the system and there is a wide range of software packages available including text processing, statistics and financial analysis.

As well as producing the system AP run courses on APL and have a wide range of books on the language. For more details contact A.P.Ltd at Maple House, Mortlake Crescent, Chester CH3 5UR.

HANDS ON PASCAL

Unfortunately you have just missed your chance to get hands-on experience of PASCAL with Dr Kenneth Bowles. Worry not, stop tearing your hair out and leave the cat alone. The course will be run again between January 15 and 18 next year. The course will be based around 15 Apples running PAS-

CAL at ICS/PCL's training headquarters in Holborn. Among the course material will be Dr Bowles own book, Problem Solving using PASCAL, one of the standard works on the language. For more details you should contact The ICS Publishing Company (UK) Limited, Pebblecoombe, Tadworth, Surrey KT20 7PA or ring on 03723. 79211.

A CASE FOR NASCOM

Portable Microsystems are packing NASCOM 1's and (hopefully) 2's into neat little boxes, much like what they have already done to the AIM 65. The two cased versions are DTC $80-1$ which is a desktop unit complete with power supply
and the BCC 80-1 which is a briefcase version with an optional acoustic coupler. Both these options will be available with the " 2 " when it finally arrives (yawn) but that is NASCOM's problem not ours. You can contact Portable Microsystems at Forby House, 18 Market Place, Brackley, Northants NN13 5SF.

PRESSING ON PRESTEL

ITT, those people who brought you the 2020, are one of the first firms to start up volume production of a wide range of Prestel equipped sets. Among the range of products announced are a $16^{\prime \prime}$ colour terminal for the business user, a Viewdata printer that handles the graphics, a message keypad and an editing terminal. Coming soon is a $26^{\prime \prime}$ receiver for the home market, complete with Teletext capability and remote control as well. Keep your eyes on your local telly shop for the range and prices.

HOLIDAYS WITH A MICRO

Bored with the Costa Del Whatsit? Fed up with Fettuchini? How about going on a holiday course with your micro. Millfield School in Street, Somerset are offering basic courses in computing and a more advanced computer workshop in their Village of Education this summer. The basic course costs $£ 20$ a week and is limited to eight at a sitting, work will be on such skills as flowcharting, BASIC programming and file handling and will be based on the school's PETs. The advanced course will cost $£ 32$ and will deal with machine code, computer architecture and other subjects. You are encouraged to bring your own for this one but PETs and KIMs will be available, a maximum of five will take this course at any one time. Residential accommodation is available at $£ 40$ including all meals. Get the brochure from the Applications Secretary, Millfield Village of Education, Street, Somerset.

Having squared your triangles we set you a special problem for Christmas

Let's start this month by taking a look at what happens with my hint. Although the program tests the software rather than the hardware, most micro's (PET, RM 380 Z, etc.) get it wrong, most 'real' computers (IBM, HP, etc.) get it right. Figure 1 shows the listing and run of a program for the RM 380 Z . We can see that the square root always prints the correct value but when we look at the integer part of that value we see that INT $(50)=49$! The difference column shows that although the machine prints 50 the stored value is the binary equivalent of 49.999993 . The interpreter rounds up for printing and we can achieve a similar result by adding an insignificant trifle, say 0.0001 , when we take the integer part of the number.

PREADY
Fig.1. What your average computer does with square roots!

Triangle Numbers

To solve our problem, we could generate values for the number of balls that exactly fit into a square and then see if that number also fills a triangle. However, it is easier to do the reverse.

Triangle numbers are generated by adding a sequence of integers.

> ie.

$$
\begin{aligned}
1 & =1 \\
3 & =1+2 \\
6 & =1+2+3 \\
10 & =1+2+3+4
\end{aligned}
$$

Figure 2 shows how this operation is programmed.

Fig. 2. The program for triangles.

Solving The Problem

All that is necessary to complete the solution for the problem is to test each triangle number as it is generated. If the number has an integer square root, then it is a possible solution.

Figure 3 shows a flowchart for the solution and figure 4 gives a listing and run of the program. I know that there is at least one solution larger than 1000000 . What's the biggest solution you can find?

Knight In White Boxes

You might have more time to yourself this month, so here's a problem that is definitely time-consuming. Just the thing for when you are immobile.

A Knight's Tour is one where a chess knight starts from anywhere on a chess board and visits each square in turn, once, and only once. The 18th-century mathematician Leonhard Euler made a square (Figure 5) where each horizontal or vertical row totals 260 , stopping halfway gives 130 , and the 16 two by two squares contained within the larger square also total 130. Even more intriguing is that a chess knight, starting its L - shaped moves from box 1 , can hit all 64 squares in numerical order.

Your task, should you be prepared to accept it, is to write a BASIC program for a Knight's Tour.

Please note that this series of problems is designed for YOU to try at home. Much correspondence has been received with answers to the problems but please don't send them to us as we know the answers already!

PROBLEM PAGE

1	48	31	50	33	16	63	18
30	51	46	3	62	19	14	35
47	2	49	32	15	34	17	64
52	29	4	45	20	61	36	13
5	44	25	56	9	40	21	60
28	53	8	41	24	57	12	37
43	6	55	26	39	10	59	22
54	27	42	7	58	23	38	11

Fig.5. The grid chart for Knights touring.

Fig.3. Flowchart for the program that solves the problem.

```
180 REM :
116 OEM * SOHARE TVIAHGLES - SOLUTION
120 NEM
138 REM * RMY OK DISC BASIC UER 3.OE
```



```
198 LET N=2
210 LET S=SQR(T)
220 LET S=1NT(S+0.0001)
238 IF ABS(T-S*5)>9.0001 THEN 290
240 PRINT "NIMBER OF BALLS IS":T
250 TRINT "SIDE OF SOUARE IS";S!"BALLS LONG"
268 PRINT "SIDE OF TR!ANGLE IS";N:"BALLS LONG"
27e PrINT
280 PRINT
298 LET N=N+!
318 IF T<1000001 THEN 210
328 EVD
```

NHMEER OF BALLS 1536
SIDE OF SOUARE 156 BALLS LONG
SIDE OF TRIANGLE IS 8 BALLS LONC

NIMBER OF BALLS IS 1225
SIDE OF SQUARE IS 35 BALLS LONG
SIDE OF SQUARE TRIANGLE IS 49 BALLS LONG

NIMBEP OF BALLS is 41616
NMMBEP OF BALLS is 41616
SIDE OF SQUARE IS 284 BALLS LONG
SIDE OF TRIANGLE IS 288 BALLS LONG
Fig.4. The final solution to the problem.

Gentroniostorty

What to look for in the February issue: on sale January 2nd

CMOS 555

Now you all know about the CMOS version of the 555 timer chip - because we told you about it last month in Designers Notebook, so no excuses in the back row please.

Only thing to do now was to get Tim Orr, the country's leading circuit man, to spend a few eons playing with the device and produce one of his superb circuit filled features all across ETIs pages next month. This is good stuff of the highest quality. Be there with your soldering irons, there are circuits for just about everything under the sun - and if we can find a heater element big enough we'll see you with a design for one of them next year.

ONE FIVE THREE SEVEN

Whatdeyer mean that you've never heard of this? Of course you have. It's a brilliant Voltage Controlled Attenuator thingy for which Keith Brindley will explain at least a million applications and designs next month. Well, not actually a million but quite a few. He also gives you a breadboard design to go away and do your own things with. What more could you possibly want? Stand up the boy in the back who said "Felicity Kendal'

MODULAR SYNTHESISER

Next month ETI presents a new series of synthesiser circuit modules which represent the forefront of modern music technology. Not only that but they're a bit new as well. And somewhat of a departure for us. The complete design will be a sophisticated machine comparable to the very best available today at any price and with more facilities than the Playboy Club.

However we are aware that not everyone has a use for such a machine, and that there are a large number of you out there who wish to experiment with sound effects circuits, without the requirement for a fully fledged synthesiser system. And So

Our latest machine will be presented in modular form, with each separate unit mounted on a 'front panel' assembly, and housed in a common box. As the PSU requirements will be standardised, you can build as many - or as few - of these superb designs as you need when you need them.

CASIO FX502P/FA1

The best thing since sliced bread. Honest. If you don't believe us read our comprehensive report on this ten program 256 step. 100 label, cassette jumping calculator and music adaptor in next month's ET।
The abacus will never seem the same again

CASSETTE HEAD DEMAGNETISER

Sometimes we're so ingenious ive anlaze ourselves! And sometimes we're so dumb we amaze evervone else.

Apart from that though this is a good idea - demagnetising your cassette player heads reduces all the nasty things that you don't really wanna hear anyway and makes those that you do sound even better

Ours naturally has something a bit special about it something that makes it both easy to use and more effective. But we're not gonna tell you what cos we want yer to buy next month's magazine instead!

VMOS 2M PA

One for all the hams of this world. Put some POWER in your words with our VFET Power Amp. Based on the latest circuit techniques this is a design to burn out the receivers of the universe. Don't just broadcast - BROADCAST with ETI!

SIGNAL TRACER

This is instead the only way to find that sinewave that went into that phono socket half an hour ago and hasn't come out yet

For the sake of all lost waveforms everywhere build this one.

NASCOM's NEW BIG DISTRIBUTOR

NASCOM-2 +FREE 16K RAM

Here's an offer you can't refuse:
Because of the lack of availability of MK 4118 RAMs, Nascom Microcomputers is supplying its Nascom 2 without the 8 spare 4118 s but with a FREE 6 K dy namic RAM board. When the 4118 s become available. Nascom 2 purchasers can have them at the special price of $£ 80$ VAT for the $8 K$. So, for £295 plus VAT this is what you get:

MEMORY

- 16K RAM boara expandable to 32 KI - 8K Microsoft BASIC - 2K NAS-SYS 1
- 1 K Video RAM. User RAM
the Nore slaving over a hot soldering iron Britain's 1 is now supplied BUILT! available fully construll system is into your own housing for for you to slot low price of $£ 140$ pling for the ridiculously only £ 125 plus VAT)

noscom-I

MOS memory packages and 33 packages. 161 K There is on-board mterface for THL packages unmodulated video and cas for UHF or
The 4 K memory block is cassette or teletype system. video display and EPROM to the operating socket leaving a 1 K user RAMOM option The MPU is the 1 K user RAM 280 which is cap standard 280 which is cap
executing 158 instructions in

MICROPROCESSOR - Z80A which will run at 4 MHz but is selectable between $2 / 4 \mathrm{MHz}$
HARDWARE Industrial standard 12×8 PCB, through hole plated. masked and screen printed All buslines are fully buffered on-board
INTERFACES Licon 57 key solid state keyboard - Monitor/domestic TVinterface

- Kansas City cassette interface (300/1200 baud) or RS232/20mA teletype interface
- Main board sockets The Nascom 2 kit is supplied compiete with for the 8×4118 s or construction article andextens ve sotisare manua 2708 EPROMS

REVOLUTIONARY TOUCH activated keyboard TASA MODEL 55

Designed and manufactured by TASA Inc of California, the TASA keyboard is a truly solid state system that has no moving parts and is virtuall 0.325 thick, 6.25 deep, 15.05 wide, the TASA has full 128 position 8 -bit ASCII output plus continuous strobe, parity select. The touch sensors are sealed in tough polycarbonate which is washable and can withstand rugged treatment in harsh environments.

Otherfeatures include.

- Two-key rollover to prevent accidental two-key operation (excluding "control' and "shitt - Electronic hysteresis for firm 'Teel" - Output via 12 -way edge connector - Parallel output active pull-down, direct T compatible (one load) open collector type.

MICRO MART

IC SOCKETS

14 pin 12 peach
16 pin 13 peach
25 peach
24 pin 30peach
28 pin ……….........30p each 40 pin ICs CS VOLTAGEREGULATOR EPROMs 2716 〔32 00each LM309K 900 each

Add VAT and 300 P , P 10 all orders
VISIT OUR NEW SHOP

The Nascom IMP (Impact Matrix Printer) features are listed below:

- 60 lines per minute - 80 character per line. - Bi-directional printing
- 10 line print buffer • Automatic CR/LF
- 96 character ASCII set
(includes upper lower case, $\$$.t. Σ
- Accepts 8 - paper (pressureteed) - Accepts 9 - paper (tractor feed) - Tractor/pressure leed
- Baud ratefrom 110 to 9600 - External signal tor optional synchronisation of baud rate - Serial RS232 interface with paraile option available soon.

NASCOM FIRMWARE

NASPEN: $£ 25.00+$ VAT $+30 p P+P$
ZEAP 2: $£ 50.00+V A T+30 p P+P$
ZEAP 2: $£ 50.00+V A T+30 p P+P$
NAS-SYS 1: $£ 25.00+V A T+30 p P+P$

NASCOM HARDWARE

Motherboard: $£ 5.50+V A T+50 p P+P$
Mini Motherboard: $£ 2.90+$ VAT + 50p P + P $3 \mathrm{ampPSU}: \Sigma 29.50$ + VAT + $£ 1.50$ P + P VERO DIP board: $£ 10.50$ + VAT + 50 p P + P

NASCOM SOFTWARE

8K BASIC tape; $£ 15.00$ + VAT
ZEAP 1 tape: $£ 30.00$ + VAT + 50 p P + P
ZEAP 2 tape: $£ 30.00+V A T+50 p P+P$

Lose yourself in this amazing game

Labyrinth is a fairly large program written in Tiny BASIC. Each time the program is run it will construct a different two dimensional maze and then allow the player to explore a three dimensional projection of this maze.

The program is divided roughly into two halves. The first half randomly builds a maze with a single route through it. A 2D plot of the maze is available at the end of this stage for those who suffer from claustrophobia. The second half of the program produces 3D projections as the player wanders along the corridors of the maze.

Building The Maze

The basic maze is a 'simple connected' maze (one which has no closed circuits). It is constructed using two, two dimensional arrays. The first array holds an indication of which cells of the maze have been used and the order in which they have been allocated. The second array holds the description of the topology of the maze.

The maze construction starts by randomly selecting an entrance along the width of the maze. This location is saved in a spare element of the array.

From this start location the maze is constructed. At each cell, the program scans the adjacent cells to see which are available to use. Having decided which are available, the program then selects one cell randomly.

Consider the following examples. In each of these four there are three possible choices, A, B and C

hence the route can be chosen from the three possibilities. Next there are six combinations of two choices.

To arrive at these chnices, the program must first scan th. adjacent cells. As the program knows the direction it has just come from, it only needs to check the other three directions.

The program continues its random route through the

maze until it hits a dead end. A branch is then made from the first route at this point and continued until the next dead end. This procedure is continued until the maze is complete.

At this point, the player can obtain a two dimensional display of the maze. Each element of the second array contains information about one cell of the maze. This information is incomplete as it is only for the top and right hand wall.

$$
0=7 \quad 1=: 1 \quad 2=-\quad 3=
$$

The Third Dimension
To produce a three dimensional picture, it is necessary to complete the cell information and organize it in such a manner that it can be rotated. The binary system fulfils both these requirements. A bit is used to indicate a wall. So we get

To turn left, the cell information is cyclicically shifted right one bit. 2 becomes 4,3 becomes 6,8 becomes 1 . To turn right, the cell information is cyclicically shifted left one bit. 2 becomes 1,1 becomes 8,10 becomes 5 .

The information for the 2 d maze is therefore translated and the information completed by inspecting the neighbouring cells. The 3D pictures are produced using memory mapping and the graphics available on the TRITON. As most systems have both memory mapped displays and graphic symbols, it should be very easy to convert this part of the program to run on most machines.

The display is constructed simply with horizontal, vertical and diagonal lines. A reasonable display would be possible with I - and / \backslash To move in the maze, the player can turn left or right or move forward. The players current position can also be obtained.

Giving The Picture

To produce the 3D picture, the program starts with the cell corresponding to the players current position. This cell is then rotated, as described earlier, until facing the same way as the player. The program then decodes the cell information and checks for the walls left, right and in front of the player. At the first depth, either a blank wall or two columns are produced. If a blank wall is produced, no further information is available. If looking out of the maze, no further information is produced and if outside the maze and looking away from it, a blank screen is all you get.

If, on the other hand, a passage exists to the next cell, the program obtains the information about the next cell by making the appropriate index and rotates and decodes this cell. At the second depth, it is possible to have walls or passages to the left, right and straight ahead.

Each depth has its own display routine which checks
for and plots the three walls or passages. Each depth produces a display continuing from the previous and maintains the perspective. The display stops either with a blank wall or when depth 5 has been reached.

The program listing following contains the full Tiny BASIC commands and is commented to make it easier to follow and to translate. If using a floating point BASIC, take. great care in the rotate and decode routines as they rely on integer rounding effects. A large number of INT commands will be required.

The program will fit on a TRITON with mother board and an extra 8 K of static RAM but the Tiny BASIC commands should be abbreviated for size and speed reasons. A tape of the program in abbreviated Tiny BASIC is available from TRANSAM of Chapel Street, London.

Program Notes

LINE NUMBERS

5-40 Clear Screen and print heading.
45-70 Ask for size of maze.
95-120 Clear arrays used to construct the maze and initialize variables. Obtain random entry point.
125-150 Save entry point and start the maze.
155-1295
155-200
210-270

275-310
320-350
355-390
395-410
420-470
475-510
515-530
540-570
575-600
610-680
685-720
725-740
750-780
785-810
820-870
875-900
910-950
955-990
995-1030
1035-1100
1105-1160
1165-1200
1205-1210 Make sure maze has an exit.
1300-1320 Keyboard scan to see if 2D print required. READ 0, I scans a byte from the keyboard on the Triton. Substitute INPUT if necessary.
1330-1570 2D print routine.
1340
1350-1420

1330-1335 Clear screen and print 'CHEAT'.
Loop for height of maze.
Print the top of a line of cells checking to

1430-1500

1510
1520-1570
1595-1620

1625-1630
1635-1870

1635-1670
1710-1870

1875-1890
1895-1950
1995-2100

2195-2270

2295-2320
2345-2370
2395-2440

2445-2460
2495-2540
2595-2790
2595-2630
2635-2660
2670-2700
see if wall or gap required. To use Triton graphics change + to w and - to s .
Print the sides of a line of cells, checking to see if wall or gap required. To use Triton graphics change I to t.
End of height loop.
Print bottom of last row of cells, leaving an entrance.
Reset cursor to top of screen and loop on the keyboard until a key is pressed. Again, INPUT can be substituted.
Call the instruction print routine.
Translate the maze into binary cell information and then give each cell the information about all its walls.
Translate maze to convenient notation and move into other buffer.
Take each cell in turn and check with adjacent cells to obtain information about all the walls.
Set up start parameters and go display entrance to maze in 3D.
Print instruction for wandering in maze.
Print helpful information when lost.
Note the $\Lambda]$ and ΛJ which perform a carriage return without clearing the screen and a line feed.
Another keyboard scan routine. Routine loops scanning the keyboard until L, R, F or H are pressed. When pressed it jumps to the appropriate routine. No real problem to substitute INPUT.
Turn Left, then go display new view.
Turn Right, and go display new view.
Clear screen and wait while it is cleared. VDU 0,12 is the clear screen command for a Triton.
Reset cursor to top of screen and wait. VDU 0,28 is the reset cursor command.
Routine to space cursor and erase messages. Rotate routine.
Check current position (A, B) and extract cell information if inside maze.
Rotate the cell information if not facing north until facing right direction.
Decode the cell information into C, D and E.

```
2705-2750
2755-2790
2795-2850
2855-2920 Position cursor for messages. \J and \I per-
    form line feed and cursor right commands
    on the Triton.
2930-2980 Print error messages when you hit a dead
    end or no mans land.
2995-3040 Routine to move the player forward to the
    next cell.
3045-4980 3D display routines.
3045-3060 Set up start position, rotate and look from
    1st cell.
3065-3080 Set up loop for up to 5 depths and call dis-
        play routine.
3085-3140 Check if possible to see into next cell. If so,
    index to and rotate next cell. Loop to a
    depth of 5 unless wall in way. Return to
    keyboard routine.
3195-3200
3205-3300
3240-3270
3280-3330
3600-3940
3600-3720
3730-3840
3850-3880
3890-3940
4000-4300
4400-4620
4800-4980
4995-5030 Clear screen and display WAY OUT. End of
        game. wall. If zero no wall and if one, a wall.
```


2705-2750
2755-2790
2795-2850
2855-2920

2930-2980

2995-3040

3045-4980

3065-3080 Set up loop for up to 5 depths and call dis-
3085-3140 Check if possible to see into next cell. If so, depth of 5 unless wall in way. Return to keyboard routine.

3205-3300

3240-3270

3280-3330
3600-3940
3600-3720
3730-3840
3890-3940

4000-4300
4400-4620

4995-5030
Set up if outside maze but facing retaining wall.
Set up if in NO MANS LAND.
Index the display to the next cell according to direction faced.

Jump to appropriate depth routine.
Clear screen and check if facing no mans land, if yes, nothing to display. Otherwise display first depth.
Map vertical lines of walls. Triton screen is 64 wide by 16 high. The screen is numbered left to right, top to bottom from 1 to 1024. VDU I,116 maps graphic 116 at the location in 1.
Check for a wall ahead and if so map top and bottom. Graphic 107 is and 108 is Display second depth.
Check for left wall or passage and map projection. Graphic 114 is $\backslash, 113$ is /.
Check for right wall or passage and map. Map end walls.
Check for end wall, return if no wall otherwise map top and bottom.
Display third depth.
Display fourth depth.
Display fifth depth. Graphic 106 is | and 105 is 1 .
Clear screen and display WAY OUT. End of game.

S PEMTILLEMR SCREEN MNI FRINT HEHDIN:
10) $\operatorname{Figll⿻}$

D1 PF INT **********
FD FFINT *LAE FFINTH*
L1 FFIMT ********
-5 PEMM-GET |AMZE IIIMENSIONS
50 PFINT ENTEF SIEE DF MMEE
6Q INPUT WIDTH H. HEIGHT \&
FO PF INT THINK IN:
65 REM-ILEAR MAEE HRFH:
1003 $\mathrm{A}=\mathrm{H}+1+1$
1LC) FOF $I=1$ TCI $H+4:$ al $I=(1)$ NE KT I

LES PEIM-SHVE MHZEE ENTF"Y POIINT

140 3) $\mathrm{x}=1.6=$

155 PEM-STAFT DF MMEE BIIILD RCUJTIME
16. IF F*H (olT) 2 (n)

1F才 IF S* (GTT) 1sw
$150 \quad F=1, \Sigma=1: 30 T 0$ दे

(2) $\mathrm{C}=\mathrm{F}+\mathrm{C}+1$

zen IF F-1=(a) (1)T) 510

200 IF $\mathrm{F}=\mathrm{H}$ GiJTis 300

275 REM-LEFT. TIDUN: RIGHT
200 CFPNDIS

उरण IF
310190701040

SEO IF $\bar{Z}=1$ GOTO the
$34010=1: 190190=50$
350 IF alf $+5 * H 1=0$ gitc $-x_{0}$
SES PEM-LEFT TOUN JF
360. S=PMDI

उनी IF $\%=1$ GJTO 350
380) If $:=\frac{2}{2}$ give was
zse woto 1110
555 PEIM-LEFT Inoulv
HeNO $\langle=$ RNDI 2 ,
410 जOTC 570
Aटत्र IF $\mathrm{F}=\mathrm{H}$ GITO) 540

440 IF S: e GOTI 470
450 If $\bar{z}=1$ GITTD 5 en
4.0. $12=1: 130101430$

475 REM-LEFT.FIGHT UIF
400 : $=$ RND
450 If $x=1$ GITO 360
Sole IF $\gamma=2$ GITO 164
510 BCO 1110
515 REM-LEFT/FIGHT
$520 \%=$ PND 21
SED BOTO 490
540 IF S:* GOTD 5\%0
550) IF $\bar{z}=1$ GOTO 50
$560 \quad 19=1.50101530$
570 IF A1FF+E*HI*D GOTCO Suse
575 PEM-LEFT MP
5000 K=PND 2

560)
510) IF $5-1=(0)$ (uT) उCo
sch IF alf $\mathrm{F}+15-21 * \mathrm{H}_{1}$ *
5 S. IF $\mathrm{F}=\mathrm{H}$ (
54id) If alf $\mathrm{F}+1+15-1$ * H *)

(5). IF $\bar{z}=1$ (0)TI) $7=1$

C is Left wall, D is Right wall and E is front

```
SES PEM1-DrNNN FIGHT 1.F
```



```
Fan\ IF }:=1=1\mathrm{ GIJTI) 1010ल
70.0 IF :}=2=2\mathrm{ GOTO 1044
```



```
7C5 PEM4-DGNMN IF IGHT
```



```
740) (0, F(1) F0)
750 IF E. GOTO 780
```



```
7F0 j=1:g0TO F301
```



```
785 PEM-DCUNMP
7GO, <=PNDI己।
3(0) IF }<==1\mathrm{ GNTO 10N0, 
310 50TO 1110
320 IF F}=H\mathrm{ (00TO 910
```



```
340 IF 5* GOTD 3%0
35.0 IF }\overline{Z}=1\mathrm{ GIDTO 10.40
36.0 1. =1:%(1TC1 &30
```



```
375 REMY-PI'HT IJF:
300 : = FNDDE
390}\mathrm{ IF 
gen) क(ITO 1110
310 IF S*: GOTI 340
z0}\mathrm{ IF }\overline{z}=1\mathrm{ GOTO 1EQ
300) 1=1:1901T0 G50
340 IF a(F+5**H)## %(TTO 150
ge(0) FOTO 1110
3E5 REM-LEFT
3EO 21R-1+1S-1 1-H1=C
170):=に+1,31-4+P-1+1S-1 +H:=2,FFFF-1
300 IF C=A GOT: IE 1G
3900 13=0: 50T0 -20
345 REM-DNMN
1000) 21R+15-ご暗=!
1010 }==
```



```
10こ0 Q=0;FOT!! 2この
10こ5 REIM-RIGHT
1040) \1R+1+(E-1)*Hi=C
```



```
10F.0 21A+R+{S-11+H1=\Xi:G1)TIO 101.30
10F() 21 A+R+(؟-1)+Hi=\overline{C}
1000 R=R+1
10su IF C=H GOTO) 12 10
1100) GOTC E. 10
1105 REMM-IJF
1110 IF 0=1 GOTO 1170
1120) arR+5+Hi=C.C=C+1;IF al A+R+(S-1)+Hi=0 GOTO 114(0
11इ0 21A+R+(S-1)+H1=亏:GOTO 1150
1140 引)}A+R+(S-1)*H|=
```


$1150 \mathrm{~s}=\mathrm{S}+1$ ：IF（ $=4$ GOTI）IE10
1100 BOTO こ20
1165 REM－E IIT RT TCIP DF SIFEEN
$1170 \mathrm{Z}=1$
1180 IF $a(A+F+1 \hat{j}-1)+H)=0$ s（ITC1 12000
11510 O1r $+\mathrm{P}+(\mathrm{s}-1)+H)=\Xi, 0=0 ;$ GOTD 1EV）
1200 ar $A+R+(S-1) * H i=1 \cdot C=(a \cdot F=1 . S=1: G) T(210$
1205 REM－MHKE EXIT IF NOT THEPE

12515 REM－END OF MAZEE BLILD
13010 PFFINT＇DIO＇YNIJ INANT TO SEE THE MKEES
1310 REAI Q．I：IF I 123 SOTO 1310
1320 IF I \＃ 49 GOTO $1 E 30$

15：5 PEM－2I IIEPLHA FOUTINE
15u FCO $J=V$ TC 1 STEP -1
IJEO FCR I＝1 TOH

1370 IF arr $\mathrm{H}+\mathrm{I}+1 \mathrm{I}-1 \cdot H 1=2$ 沓TC 14010
1375 REIT－PFINT TCIP DF CELLS
1300 PFINT＋
$135015(1 T C 11410$
$14010)$ PF－INT
1410 NEKT I
14 c 0 PFINT＇
14 ED PFINT＇I
1440 FGIR $I=1 \mathrm{TO} H$
1450 IF $\operatorname{ar}(\mathrm{H}+\mathrm{I}+1 \mathrm{~J}-1) 4 \mathrm{H})<2$ GOTC 1480
1455 REM－PFINT SIDES OF CELLS
$14 E 0$ PFINT
1470 COTC 14 GID
1480 PFINT ，I
14GUT NEKT I
1500 PFINT
1510 NEKT J
15 c Q $\mathrm{F}(\mathbb{R} \mathrm{I}=1 \mathrm{TO} \mathrm{H}$

$15=5$ REM－PFINT BCITTIDM CF MFBE
1540 PFINT＋－－＇，GOTI 15以
ESA OFINT
15E．0 NE：ST I
1570）PFINT
1595 REM－PAIJSE FCRR VIELIINIO
1500 GOISUB 2450
1510 PFINT＇FEADY＇

15 E 5 REM－PFINT INSTRINOTION
$15 シ 0$ 5015UB 15100
15：5 REM－TFANSLATE R（IJTINE
1540 F（IR $I=1 \mathrm{TC} \mathrm{A}-1$
$1550 \mathrm{I}=\mathrm{I}+\mathrm{H}$
156．0 か（ $1=(\overline{3}-3) \mathrm{J}) 1 * 2$
1570 NE KT I
1710 小に al A
1715 PEM－SNIFLETE CELL INFGPMATION

```
暚 F!| T=1 Tf!
17FO V=1T-1 1+H
IF-(0) FiE I=1 TO H
F=~
170. IF T#1 G)TV 1F-\0
1F70 IF I=\1 GTO 1800
```



```
LS10 का LI=*L L+M+3
1%己. IF I=1 M=1:%0゙!) 1550
:3E0)M=31L-1,4
154(0)|=||-N1咅|z
135% क人L=81+!
13FM NE ST I
13FE UEST
1E马E, EE|T SET IFF ETHFT FMF|N
```



```
13G|
1SG, EEM-INSTFMUTION EF INTG!T
```



```
CH10 FFINT ENTEF L TOI TIFNN LEFT
H2R FFINT F TO THPN FIGHT
ASBFINT F TO FOFINRD
13+4 FFINT H FOF HELF
195 EETIFN
ZASF FEM-HELF FOUTINE
C
己引\G FFINT *1.%, ENET : ] ]. T.
COCG FFINT #1.Y' NOFTH, `J, - I
CAZAFFINT ,员 HEE FACIN': *,"T.
EQ40 IF E=1 FRINT NGOTH
```



```
END IF E=F FPINT SOIIH.
二aन\ IF E=4 FFINT HEST
2,g PFIITT <I, "J.
```



```
देमित आ
```



```
zem, IF ;'u goly 50,0
C210 PEHII Q.H
cicd IF H12S GOT\ 2-10
```



```
<2-3 IF m=\tilde{c}+c
```



```
シ2FO %TO E210
-2,5 FEM-LEFT TIFN
zO(0) z=z-1
Eミ10 IF ミ1 \Xi=\Xi+4
```



```
ZOSEH-FISHT TUFO
```



```
-sed IF ב.4 z=\overline{z}-4
```



```
2SOE FEM-LLEHP SCREEN MNII UHIT
ZपणलI= Iz
```



```
ZCG FGF I=1 TG EDG
- \OO ME:T I
ZHAO PETIKN
CHES REM-EESET CLRENF GNI WHIT
E450 I=2%
```



```
CH%5 FEM-EFHEE MESEAGE FOUITIME
C500 505|, 2850
=510 PFINT
25% SOSN 2456
-5(0)
ESHB PETIIRN
ESG5. PEM-RDTHTE HNII LOCN RGITINE
BW0 IF E=0, GOTI) }271
2610 IF EN E=\Sigma:FETJFN
```



```
心ここの IF E=1 GOTO 2EFE
C:S PEM-RCTHTE
2,
```



```
E%\mp@code{A NEST I}
```



```
ZOCNEF,Z-1F 41+?
`FO}\mathrm{ PETIRN:
-7GS PEM-DUTSILIE MGBE
```



```
CFEM E=1
C=40) IF H=1.1 E=0.0
2ZSD RET\IPN
<755 FEM-NO MMNS LMUNI
```



```
<-C IF 孚=c IF M=H E=\
2?C) IF z=4 IF M=1 E=s
<%* FETUPN
< TGS FENTIMLE: TO ME:T TELL
```



```
210 IF }\overline{z}=1\quad\textrm{E}=\textrm{E}+
2scg IF इ=\tilde{c}}\textrm{H}=\textrm{H}+
2SB IF E=Z E=E-1
34M IF E=4 H=H-1
ZSEO RETIIPN
2SS5 REM-MESENTE ROUTINE
250 FOP I=1 TO &
ESFO PF-INT -T,
己こOD NEST I
```



```
2,\MC PFFINT *I.
Z.ON NET I
EGO PETUPN.
```



```
&\un IF E=1 FRINT
DEHI' ENL:
ziEU IF E=\tilde{己}\mathrm{ FPINT NO MANS LHINI}
CH64 5OIBUB 245w
c,\7% }=
Z*ON FET!Fi
c3OM RET.RM.
ENE REM-FIPGMFD POUITINE
#gmon H=%, B=Y
```



```
#(0) <=A.'=B
```



```
SDU5 PEM-3LI IIGPLH: FOMTINE
```



```
\00 SOS|B 2EON
#N5 PEIM-5 DEFTHE
##7त FGP T=1 TO 5
#ne# gosuB Jcom
\XiAES REIף-FHECK FOR NET IEFTH
Enge IF E*C GtTy zcom
#GO FCIGUE 20|N
110
-110
```


F1EO NE：TT T
5140 50TO E2OM
E19E REIT－TUTF TO DISFLAT DEPTH
ER00 TOTC T＊400＋ 2310
EESS REM－DISFLHY DEFTH 1
3210 OHg E 2400
zean If E FETIJN

zeploll I． 115
E2ed VIU I＋28． 116
SZFO MET I
E2za IF E＝0 FET IF＇N
ECGM FGR $I=31$ TO 102
ST0n M11 I． 107
3310 VIN I $+3505,1003$
ES2O NEKT I
S3EAR RETURN
FSoM PEM－DISFLAM＇DEPTH 2
3510 IF $\mathrm{C}=0$ GOTD 3630
35 Cl VIUJ 31.114
E5EA VIUJ 147.114
55540 VINj 213.114
ご50 Y 1014 977．113
Enf0 VIU 315,113
3570 VIU 353． 113

SLGO FOR $\mathrm{I}=273$ TO 277
57001 MU1 I 107
Э710 VIN $\mathrm{I}+512.103$
B7CO NETT I
5750 IF $\mathrm{I}=6 \mathrm{GOTO} 3810$

E5EM VLIU 1E9，113

57．a VIU 1002 114
EROM VLU IET． 114
3F89 VIU 371．114
उBan gito＝3．
S310 FGR $I=295$ TO 230
इSch VIU I，197
EGEAVIH I＋512． 1013
SBH NEST I
Z®A FOR $\mathrm{I}=273$ TC． 75 G STEF 54
三3Ey VIU I． 115
3370 VIJ $\mathrm{I}+16.116$
ESEM NE：ST I

F310 U［リI． 107
इ500 M1 I +512.103
₹ern NE ST I
E34 RETIIPN

HADCH FEM－DISFLFi＇DEFTH 3

4 10 NE T I
4110 IF $I=0104170$
4109 VIU 253.115

415 リ以リ 75.114

$417 \mathrm{FGP} I=413 \mathrm{TO} 421$

4150 VIU I $+255,103$
＋2QO NE IT I
4210 FOR $I=410$ TG FBE GTEF E

4हこの VIリI I +3.115
4ट4 NE ST I
425 IF $E=0$ FETIFN
4之EU FOR $I=411$ TS 417

4280［101 I $+255 \cdot 160$
HEET NE T I
SEMA FETSIFN
44 COU FEI4－DISFLHi DEFTH 4

－420 V［！＋11．114

$\rightarrow 4 \rightarrow 0$ OTTC $44=0$
$-450111+5.10=$

+403 ru！+17.113

－5 20.0450
$4 E 10 \mathrm{IN} 481$ ． 100^{7}
－ECN VIII 500.1003
45 FOR $I=4 F 5$ TO ENA STEF EL
$+4 \times 10 \mathrm{IN}$ I． 115
$45501 / 111 \mathrm{I}+4,116$
4500 NE IT I
4 IF $E=0$ FETIFN
4560 FOF $I=477$ TO 47 E

4F10 NE T I
4SEN PETIPN．
43 BNO REM M DI FFLHi DEFTH 5
4310 IF C＝0 GOT！ 485
4300 YIN 477.114
43E VIN 5015．113
4340 BपT0 43न0

40503 リNy 505． 161^{7}
4370 IF $[1=010 T 14916$
4300 V 11 4 73.115
43玉（9）VIU 5लन．114
4 दैल 50104900
$4 \div 10$ VIU 473,163
490 YI． 5017.107
4 Fiv VIUJ 541,1615
4 F49 ULIJ 543.105
43 IF IF $E=0$ FETIJF
4．9．0 U［1］ 473,1013
4970 VIN $5(205.167$
4 CO PETIRN

5 Fene scis IB z40̃त
5010 GOH B 2050
$50 \mathrm{FF} \cdot \mathrm{INT}$ ，WHi＇CIIT
EVTN STIF

Your London \& National Nascom Distributor. Export Orders deduct VAT, but add 5\% carriage Official Export \& Educational Orders welcome

Our Telex 262284 Mono Ref. 1400 Transonics \square

HENRYIS

404 Edgware Road Lom Londonsion W2, England
\square 01407 6R22

TRS 80 SOFTWARE

The leaders in

 innovative softwareAll types of programs for the TRS 80 Model 2 software available soon Large 18p SAE for our current catalogue A. J. HARDING

(MOLIMERX)

21LO2	450ns	83p	
21L02	250ns	100p	TRS-80 16K Upgrade Kit
2114	450 ns	495p	
2114	250 ns	545p	£64 for keyboard unit
4118 4118	300 ns 150 ns	${ }_{775 p}$	¢58 50 for
2708	450ns	725p	£58.50 for expansion box

Floppy Discs by VERBATIM £21.50 box of 10 (Mini soft sectored for APPLE, PET, TRS-80 etc:)
We stock the full NASCOM range of products Large quantity of 74 LS stocked along with many other components, free lists sent upon request $\begin{array}{llllllllllll}\text { TEXAS IC SOCKETS } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40\end{array}$ $\begin{array}{llllllllll}\text { Soider tail pence: } 10 & 11 & 12 & 16 & 17 & 19 & 21 & 27 & 37\end{array}$ $\begin{array}{lllllllllll}\text { Wire wrap } & * & 24 & 36 & 39 & 46 & 58 & 61 & 63 & 70 & 109\end{array}$ Gold plated S 100 edge connectors $£ 3-25$ each $\mathbf{~} / £ 9-50$
$4.7 \& 8$ way DIP switches, all at $85 p$ We keep a full range of wire wrapping equipment: Wrap-Strip-Unwrap tool $£ 5.63$ 50 foot reel of wire £1-64 Just-Wrap tool with 50° wire £12-21

We've got Euroconnectors Educational \& Government orders welcome Min £10

Shop open ten until six Access \& Barclaycard Prices inc VAT, orders below $£ 10$ add 25p p \& p
19 Bevois Valley Road, Southampton, Hants. SO2 0JP Tel: (0703) 39267

S100-the Britishw way

The Vero S100 Sub Rack is a $19^{\prime \prime}$ rack mountable development kit, complete with its own power supply and backplane motherboard, for the construction and evaluation of microprocessor based systems to the S100 format. The power supply provides three voltage levels $+8 \mathrm{~V},+18 \mathrm{~V}$ and -18 V . The Sub Rack has its own cooling fan providing airflow across the boards and the power supply. A full range of allied items to enable a complete system to be constructed are available.

VERO ELECTRONICS LTD RETAIL DEPT.
Industrial Estate, Chandler's Ford,
Hampshire SO5 3ZR
Tel: (04215) 62829

$188-2341 \mathrm{H}$ 06-0095L 06-2337L 06-2338F 15.1630K

15-1632L
09.2340 H

48-8345K
75-2867G
79-1729L

ITEM DESCRIPTION

S100 Sub Rack
S100 Dip Board
S100 High Density Board 5100 Square Pad Board Compatible Connector (Solderiug)
Compatible Connector (Miniwrap)
S100 Extender Board
Mk. 11 D Series Case
Keyboard Console
Verowire Wiring Kin

Dear Sir,

Having completed my first course in machine-code programming at University last year, I was very interested in any software concerned with the INTEL 8080 and to this extent I obtained a copy of the L5.1 Monitor/Tiny Basic for the TRITON. Going through the listing and understanding everything was the task I set myself and just recently completed. However, there are a few points I would like to bring up with the programmer.

1. The Random number Generator; this works by having a pointer increment for each call of RND, with the pointer set to the interpreter code. The BASIC interpreter resides in ROM between locations 0400 and 0CD4. The pointer is initially set to a value between 0400 \& 04 FF and then picks up Interpreter code, using this code as the random numbers. When the pointer reaches OCD5 it is set to 0400 and repeats itself. In effect the whole Basic interpreter is treated as a table of random numbers. My objection is that not all the numbers are there, so that the table is not producing a set of linear random numbers. Also the series is rather predictable.

Some ideas to remedy this. The pointer is in two bytes at 14C7 which I think in decimal is 5319. So a program could start off 10 input A; poke 5319, A/2000 (A is any number - a seed). This will give a better spread of numbers, as the random number table can start in the MONITOR rather than the INTERPRETER.
2. In TAB2 (which is a look up table for statements), IF comes before INPUT. So if a program comes across I, this will be treated as IF. This means however that the short form of INPUT is IN. Now the short form of IN is the same length as IF $(=1)$. So that should the positions of IF and INPUT be changed around, I. will represent INPUT and IF will still be 2 bytes long. The overall result being to save valuable bytes.
3. Other micro-computers define PEEK and POKE as single byte operators. For double length working, the commands DEEK and DOKE have been introduced. Now there are several applications where a single-length PEEK would be useful, On screen Editing and video games are two. Yet the only way to do this is to enter an m / c subroutine and call it. As there is already a single length POKE on the machine (VDU), could not a single length Peek be added?
4. A tip for those who are writing programs with

BASIC and 8080 code combined. Have all the 8080 subroutines at the very top of memory compressed as tight as is possible. Now take the Start address of the lowest subroutine and put this into locations 1481 and 1482. This has the effect of limiting the memory for programs and array so that should an Array index go out of bounds because of a bug, then a SORRY message will appear but the subroutines will still be safe. The subroutine memory is "protected".
5. The spare functions SPRA, SPRB, SPRC and SPRD provide vectors to $1 F F$ d, $1 F F A, 1 F F 7$ and $1 F F 4$. But anyone with offboard RAM which goes past those addresses is going to have to avoid these functions as calling them will jump straight into the BASIC program and crash it more than likely. It would be advisable to vector them into an area near the interrupt vectors which were shifted themselves for the very same reasons.

The whole exercise I found very illuminating. Were I to write a BASIC (Tiny or otherwise), then the knowledge gained here would be invaluable. One thing I would prefer though: when a program is entered, if a number goes first, then any rubbish can be typed in. The validity of the lines is not checked until run-time. An alternative method is to search the line as it is entered, and if a statement is found (LET, GOTO, PRINT etc.) then substitute a special character for it. This has the further benefit of great savings in program storage. Execution is the same as before except that less searching for a match is needed, this speeds the running. Special characters can be obtained from using the codes 128-255. As these are never input or output, no formatting of the top bit is needed. Eg. Program listings print the characters GOTO when the code for goto is found. No confusion arises wiht the special characters and "numbers in Hex", as apart from the line number, all other numbers are stored in character form which is ASCII using only codes 0-127. A final bit of ingenuity is to make the special characters Indices in a jump table for the functions. The running time is then very quick.

Yours etc.
David Bolton.

19 Carrickburn Road,

 Carrickfergus,Co. Antrim.

Dear Sir,
Mini Ledger Program - August Issue CT
The criticisms of the hexadecimal listing of the above program on the pages which followed the BASIC program are fair comment and I admit to having fallen into one of the 'traps for the unwary'!. The criticism should, however, be levelled at me and not the editorial staff on this occasion. Each of the writers of the letters you printed were of course quite correct and I accept their statements as constructive and valid.

One of the great assets of CT is the facility it provides on the (printout) page for those like myself who are anxious and willing take advice and criticism from those more learned in the art of programming, and I am most grateful to all those who took the trouble to write.

Yours sincerely,
W.H. Davies.

98 Henley Road,
Cheltenham,
Glos. GL51 OLD.

Dear Sir
The November edition of CT contained a letter from Nick Beard suggesting that the Hangman program from the Sept issue could be improved by use of an ON. .GOTO statement in line 475. It appears to me that lines 480 to 730 could be replaced by the one line :
$480 M=(A S C(Y \$)-65)^{*} 2-54^{*}\left(Y S>{ }^{\prime \prime} M^{\prime \prime}\right): I F M>10$ 40 RM<0 THEN PRINT "LETTERS ONLY":GOTO220 Where the $Y \$>$ ' M " expression yields a value of -1 only if true. I feel that a magazine like CT which runs articles claiming to teach good programming techniques should think twice before publishing programs of such poor style. Yours sincerely
Ray Bannon.
8 Carmarthen Close,
Hinsford,
Cheshire.

Dear Sir,
I found your Triton typecast article very interesting since many years ago, I was a foreman of signals, in the army, responsible for the maintenance of many such machines. I have also recently bought a WD. 7B machine which will be used with a computer I am making and will be adapting parts of the program for use with it (it will use a Z80).

However, some additional information, to that given in the article seems to be necessary, if any user is to get long and satisfactory operation of such machines.

No mention is made that a current limiting resistor is necessary in the $24 V$ supply to ther operating magnet. The operating current of this when used in the single current mode as shown, must be at least 30 mA , but cannot be very much more, otherwise the coils will burn out. The resistance of each coil is nominally 100R, hence with both in series a limiting resistor of about 600 R is needed, I use 560R which gives satisfactory operation.

With the standard connections to the 9 pin plug, shown in the creed manual, the junction between the two magnet coils goes to pin 2, hence I think that with the connections shown in the article, only one coil is in use. To use both in series as usual for single current operation the ground connection should go to pin 3.

Most teleprinters with 24 V DC motors on the surplus market are ex-WD machines. The GPO machines usually have 240 V AC motors. My own machine is ex WD and its electrical connections are standard army as shown on the attached photocopies, except that the $2 u$ capacitor
connected to terminal 4 of the RH strip, and the 500 n and 300 R connected to terminal 7 are missing. (Note that the plug pin numbering is reversed as compared with your article).

For satisfactory operation in the single current mode, the creed manual shows the missing $2 u$ capacitor connected across the magnet coils, and I have found this necessary and added it. (The $500 n+300 R$ is used instead in the double current mode). The creed manual (see copies of Pp26, 27 attached) also gives other conditions for single current operation, including a 50 V signalling supply, but the army never used this and I have not found it necessary.

The DC motor requires $3 A$ when running, with a much higher starting current. I use the circuit shown below. (The army used a circuit in which single phase input was converted to 3-phase at 120° and rectified this).

It is stated in the article that "they use cheap roll type paper rather than continuous forms". This is incorrect machines with friction feed and machines with sprocket feed are both available. My machine is a sprocket feed with a carriage for a pack of forms, but I have adapted it for friction feed. It had no missing parts, all the adjustments were correct and it worked adequately after olling.

Yours faithfully,
W.H. Hammond.

6 Meadow Road,
Gravesend,
Kent DA11 7LR.

Dear Sir,

The letter in 'Printout' in CT dated November '79 must have been written by an idiot. Anyone can see that the improvement to M ' $/$ 'Coates' "Hangman" program should be: 475 ON (ASC (Y\$)-30) GOTO 480,490,500. .730 $480 \mathrm{M}=0$
485 GOTO 740
$490 \mathrm{M}=2$
495 GOTO 740
500
505

725 GOTO 740
$730 \mathrm{M}=104$
What an idiot. That'l/ teach him to submit untested programs!

Nick Beard.
St. George's Hospital,
Medical School,
Cranmer Terrace,
London SW17 ORE.

Look into the 80's with the Luxor European ABC 80

This microcomputer, tested and acclaimed Europe's finest, now available from IMEX, provides the following features:-
*Uses powerful Z80A Microprocessor giving large system flexibility.
*Basic language for ease of use and speed of learning.

* On board 16 K byte ROM plus 16 K byte RAM.
*Fully expandable to 64 K byte.
*Integral 128 note audio generator.
*Full feature 'qwerty' keyboard.
*64 graphics plus full alpha-numerics.
*System includes high quality $12^{\prime \prime}$ monochrome VDU with sound channel.
*Displays A 40 character, 24 line format.
*This is a complete working Microcomputer - just plug in and go. *Other uses include Viewdata and Control Terminals, word processing, etc.
*Designed for Education, Business or Home use - variety of
software available.
*Other available peripherals include a Viewdata Modem, variety of printers, Plotters, Floppy Disc Memories, Digitizers and A-D Convertor.
*INITIAL ORDERS FOR THE LUXOR EUROPEAN ABC 80 WILL BE SUPPLIED WITH ITS HIGH QUALITY CASSETTE MEMORY STORAGE UNIT AT NO EXTRA COST.
£730 BUYS THE COMPLETE SYSTEM

Imex Marketing Facilities

FOX OAK, SEVEN HILLS ROAD, WALTON-ON-THAMES. SURREY KT12 4DG

Telex: 929529.
Telephone: Weybridge 44896.

\title{

NEW UNBEATABLE 1980 PRICES NOW! EXPLORER/85

 FEATURES INTEL 8085 cpu

 FEATURES INTEL 8085 cpu WITH ON BOARD S-100 EXPANSION WITH ON BOARD S-100 EXPANSION

FLEXIBILITY: Real flexibility at LAST. The EXPLORER/85 features the Intel 8085 cup 100\% compatible with all 8080A and 8085 software. Runs at 3 Mhz. Mother Board (Level A) with 2, S100 pads expandable to 6 (Level C).
MEMORY: 2 K Monitor ROM - 4 K WORKSPACE/USER RAM - 1 K Video RAM - 8 K Microsoft BASIC in ROM or Cassette. INTERFACES: STANDALONE FULL ASC11 Keyboard Terminal, $32 / 64$ characters, 16 lines. Cassette interface (with motor control and cassette-File Structure). RS-232/20Ma loop. 4, 8 bit: 1, 6 bit I/O ports, programmable 14 bit binary counter/timer. Direct interface for any S-100 Board. FULL Buffering Dicoding for $\mathrm{S}-100 \mathrm{n}$ Bus pads. Wait state generator for slow memory. Each stage has separate 5 v 1 A regulator for improved isolation and freedom from cross talk. P.S.U. requirements:- $8 \mathrm{v}, 6.3 \mathrm{v}$ AC. Runs with North Star controller and Floppies/CPM. EXPLORER/85 is expandable to meet your own requirements with easy to obtain S-100 peripherals. EXPLORER/85 can be purchased in individual levels, kit form or wired and tested. OR as a package deal as above.

\section*{$=\square_{0}$

$=\square_{0}$
 £275 + VAT

Microsoft BASIC on Cassette
£295 + VAT
Microsoft BASIC in ROM

AVAILABLE NOW!

We are killing inflation with ELF II

The tried and tested Microcomputer System
that expands
to meet
your needs

ELF II

Board with video output

+VAT

FEATURING THE RCA COSMAC 1802 cpu
STOP reading about computers and get your "hands on" an ELF II and Tom Pitman's short course. ELF II demonstrates all the 91 commands which an RCA 1802 can execute and the short course speedily instructs you how to use them.
ELF II's VIDEO OUTPUT makes it unique among computers selling at such a modest price. The expanded ELF II is perfect for engineers, business, industry, scientific and educational purposes.

ELF II EXPANSION KITS - EX VAT
Power supp 6.3v AC for ELF II $\mathbf{£ 5 . 0 0}$
ELF II Steel Cab
Giant Bd
4K RAM Bd
Expansion power supply
ASC II KeyBd
ASC II Cab
Kluge Bd
86 Pin Con
LIGHT PEN
Video Graphics Bd
ELF II Tiny Basic cassette
ELF-Bug
Short course on progrm
Short course on Tiny basic
RCA 1802 manual
Tex Editor Assembler, etc.
$\Sigma 5.00$
$£ 19.75$
$£ 25.50$
E57.50
£19.00 £39.95 $£ 12.75$ $£ 11.00$ £3.75
$£ 3.75$
$£ 6.00$
$\mathbf{£ 6 1 . 5 0}$

$£ 9.75$

$£ 9.75$
$£ 3.00$
$£ 3.00$
$€ 3.00$
$£ 12.75$

ELF II BOARD

SPECIFICATION

- RCA 1802 8-bit microprocessor with 256 byte RAM expandable to 64 K bries.
- RCA 1861 video IC to display program on TV screen via the RF Modulator Single Board with profers - fully decoded to eliminate the waste to ellminate the waste
of memory for key. board decoding circuits. Load, run and memory protect switches. 15 Registers. Interrupt. DMA and ALU. Stable crystal clock Built in power regulator, 5 slot plug in expansion bus (less connectors)

NEWTRONICS KEYBOARD TERMINAL

AT $£ 114.20$ + VAT
The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance free. It will allow you to display on a monitor 16 lines of 64 characters or 16 lines of 32 characters on a modified TV, (RF Modulator required).
The characters can be any of the 96 ASC 11 alphanumerics and any of the 32 special characters, in addition to upper/lower case capability it has scroll-up features and full $X-Y$ cursor control. All that is required from your microcomputer is 300 baud RS232-C or 20 ma loop serial data plus a power source of 8 v DC and 6.3 v AC. The steel cabinet is finished in IBM Blue/Black. And if that is not enough the price is only $£ 114.20$ + VAT as a kit, or $£ 144.20$ + VAT assembled and tested. Plus £2 P \& P (Monitor not included).

RACAL AP12, C12 TAPES: 10 for $£ 4.50$ + VAT
NOW AVAILABLE 8K FULL BASIC FOR ELF II
NEWSOFT GAMES FOR ELF II: $\mathbf{4}$ for $£ 5+$ VAT

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add VAT to all prices (except manuals) P\&P £2. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number.

NEW ADDRESS: H. L. AUDIO LTD BIGGER PREMISES 255 ARCHWAY ROAD, LONDON N6 5BS
 NEW PHONE No. 01-348-3325

WE ARE NOW OPEN FOR DEMONSTRATIONS AND SALES MON-SAT 9.30-6.30pm NEAR HIGHGATE UNDERGROUND ON MAIN A1 INTO LONDON

ARRRGGGHHH,....

Let your micro run your slide shows for you with this Nascom package

Do you own a remote-controlled slide projector? Would you like to be able to operate it automatically, so as to provide a non-stop slide display without the need for a human operator? The NASCOM program desscribed below was developed for a wedding reception, where a 'This Was Your Life' series of photographs of the bride was on show to the guests throughout the afternoon in a room adjacent to the reception. The program would be equally suitable for advertising or training material, or for any situation where continuous projection is required.

Hardware

The projector used was a Rollei P-35, which has a straight magazine and a remote control unit with a single slide change button. A short pressure moves the magazine forward, a longer pressure moves it back. The NASCOM program moves the magazine forward at regular intervals until all the slides have been projected, then reverses the movement and works back through the magazine to the beginning. This process is repeated indefinitely.

The program would control any similar projector: for one with a circular magazine, such ass the Kodak Carousel, no backward movement would be necessary (in which case lines $80-85$ should be modified to zeros).

My NASCOM 1 had been fitted with a relay to control a cassette recorder (a circuit diagram of the modification was given in the April 79 and May 79 issues of COMPUTING TODAY. However, I found that the current used by the slide projector was sufficient to cause arcing at the relay which occasionally broke the program. I overcame this by passing the slide control current through a separate relay, and controlling the operating coil of that relay by the relay in the NASCOM, as shown in Figure 1.

Software

The program comprises three sections. The first section displays instructions to the operator, and reads in the number of slide changes required. The core of the program consists of two loops, one controlling the length of the slide change pulse and the other the interval between pulses. Finally, there is provision to interrupt the loop at any time to stop and restart the program. While the program is stopped the magazine can of course be moved backward and forward manually at will, provided it is returned to the point where it was stopped.

Let us look at these sections in more detail. The program is executed from its first instruction, and begins with a program reference number, which can be deleted if desired. It then jumps to the INITIALISE VARIABLES section at line 147, which for greater clarity is placed immediately after the variables it affects. The program then returns to DISPLAY INSTRUCTIONS.

In the preamble, several lines of message appear on the screen (see Figure 2). To make these easier to assimilate, when they are first shown the display is deliberately slowed down by calling the delay subroutine (lines $157-159$). However, when the main loop is started by typing S, this delay is eliminated by the routine in lines $168-171$, so that

Fig.1. The high current drive circuit for the slide projector.

Fig. 2. The screen display on initialization.
if the program is restarted the now familiar messages are displayed instantaneously.

The preamble includes a check (lines 173 - 185) against letters being accidentally keyed in instead of numerals. However, it is possible for the wrong number to be typed, so the facility is provided to return to the monitor (by typing M) and restart the program.

PREAMBLE
Displays introductory messages, accepts number of slides from keyboard

SLIDE PROJECTOR CONTROL

Type number of slides (two digits): 25
Position magazine so that first slide shows
Switch to REMOTE
Type S to start
(To return to monitor type M)

The duration of the slide change pulse is controlled by a simple delay loop (lines $55-59$). The duration of the pulse is controlled by a count, which is doubled when the end of the magazine is reached so as to provide for the necessary succession of backward changes (lines $80-86$). This count is held in E7B - line 151 - and can be modified if necessary to suit the projector being used.

The viewing time loop is in fact two loops, one inside the other. The inner one is controlled by the count at D9B-C (line 64) to last for approximately one second. The number of times this loop is gone round depends on the count at E65 (line 143) which may be modified to any desired value.

Within the inner loop is a jump at line 68 to a routine which checks the keyboard for a STOP instruction. This may be ' H ', meaning 'Halt immediately', in which case lines 98-99 loop around until the program is restarted by ' S '; alternatively, there may be an instruction ' E ' to stop when the last slide has been shown. In this case a marker is set (tested at lines 77-78).

Note that any unused locations in the program are filled with 'E7'. This procedure, as recommended in the NASCOM Newsletter, ensures that should the program reach one of these locations owing to a program fault, it will return to monitor and display diagnostic information rather than wander off into a loop.

Possible Enhancements

Users with extended store should find it a fairly simple matter to display a caption to coincide with each slide. A further refinement would be to set up a table with a different viewing time for each slide.

Clear screen

This is a program reference number which may be reset to zeros if desired).

Jump to INITIALISE VARIABLES
Point at screen
Point to message
Display '*SLIDE CONTROL III*'
Point to screen
Point to message
Display 'Type number . . .'
Call S/R to examine keyboard
Jump back if no key
Point at screen
Display first digit
Call S / R to check for numeric key
Mask off first 4 bits
Jump on if = 0
Put first digit in B
Clear A
Add 10
Jump back till zero
Transfer tens to slidecount
Call S/R to examine keyboard
Jump back if no key
Point at next space
Print second digit
Call S/R to check for numeric key
Mask off first 4 bits
Put second digit in B
Bring back part count to A
Add units to tens
Subtract 1 to give number of changes

33 D49 $32 \quad 60$ OE LD OE60, A DISPLAY INSTRUCTIONS 2

34	D4C	11 4D	09	LD DE, 094D
35	D4F	CD A0	OE	CALL DISPLAY
36	D52	11 CD	09	LD DE, 09CD
37	D55	CD AO	OE	CALL DISPLAY
38	D58	11 4D	OA	LDDE, 044D
39	D5B	CD A0	OE	CALL DISPLAY
40	DSE	11 4D	OB	LD DE, 0B4D
41	D61	CD A0	OE	CALL DISPLAY
42	D64	CD 69	00	CALL KBD
43	D67	FE 4D		CP M
44	D69	CA 00	00	JPZ 0000
45	D6C	FE 53		CP S
46	D6E	20 F4		JR -10
START				
47	D70	C3 B0	OE	JP OEB0
48	D73	11 CD	08	LD DE, 08CD
49	D76	CD AO	OE	CALL DISPLAY
50	D79	11 4D	09	LD DE, 094D
51	D7C	CD A0	OE	CALL DISPLAY
52	D7F	00		NOP
53	D80	3A 60	OE	LD A, 0E60
54	D83	4F		LD C,A

SLIDE CHANGE LOOP

Provides set number of change pulses at required intervals
SLIDE CHANGE

55	D84	3 A	62	0 O	
LD A, 0E62					
56	D87	47			
57	LD B	CD A	51	00	CALL MOTFLP
58	D8B	CD	35	00	CALL KDEL
59	D8E	10	FB		DJNZ -3

VIEWING TIME

60	D90	$3 A$	65	$0 E$	
61	LD A	47			LD B, A 65
62	D94	11	FF	FF	LDDE, -1
63	D97	CD	51	00	
64	CALLMOTFLP				
65	D9A	21	FF	02	LD HL, 2FFH
65	D9D	19			ADDHL, DE

Transfer to CHANGECOUNT

Point at screen
Display 'Position magazine . . .'

Point at screen

Display 'Switch to REMOTE'

Point at screen

Display 'Type S to start'
Point at screen
Display 'To return . . .'
Call S / R to examine keyboard Is it M ?
Return to monitor if M

Is it S?

Jump back if not S
Jump to MODIFY DISPLAY
Point at screen
Display 'Type H...
Point at screen
Display 'Type E . . .'
Place changecount
in C

66	D9E 08		EX	Exchange registers to preserve
67	D9F D9		EXX) while jumping out to
				KEYBOARD.
68	DAO 18	28	$J \mathrm{R}+42$	Jump to KEYBOARD
69	DA2 08		EX) Restore registers
70	DA3 D9		EXX	
71	DA4 38	F7	JRC-7	Jump back till HL is zero
72	DA6 10	F2	DJNZ -12	Jump back till B is zero
73	DA8 79		LD A, C	
74	DA9 CE	FF	ADDC FFH	Subtract 1 from
75	DAB 4F		LD C, A) CHANGECOUNT
76	DAC 20	D6	JRNZ - 40	Jump back to SLIDE CHANGE until all slides seen.

TEST MARKER

77	DAE 3A	61	OE	LD A, 0E61
78	DB1	B7		
OR				
79	DB2	C2	00	00

$\left\{\begin{array}{l}\text { Test marker } \\ \text { (set by E) } \\ \text { Return to monitor if marker set }\end{array}\right.$

CHANGEOVER
Changes length of pulse to provide alternate forward and backward movement

80	DB	3A	62	OE	LD A, 0E62	Move SHORTCOUNT to
81	DB8	32	64	OE	LD 0E64, A	CHANGEOVER
82	DBB	3 A	63	OE	LD A, 0E63	Move DOUBLECOUNT to
83	DBE	32	62	OE	LD 0E62, A	SHORTCOUNT
84	DC1	3 A	64	OE	LD A, 0E64	Move CHANGEOVER to
85	DC4	32	63	OE	LD 0E63, A	DOUBLECOUNT
86	DC7	C3	80	OD	JP 0D80	Return to start of magazine

KEYBOARD
Accepts letters typed on the keyboard and initiates appropriate action

87	DCA	CD	$\begin{aligned} & 69 \\ & \text { D3 } \end{aligned}$	00	CALL KBD	Calls S / R to examine keyboard If no key, return to line 69
88	DCD	30			JPNC -43	
H						
89	DCF	FE	48		CP H	Is it H?
90	DD1	20	3D		JRNZ +63	If not H , jump on to E
91	DD3	EF	1E	48	41 RST 40 H A	Clear screen. Display message
92	DD7	4C	54	45	44 LTED	
93	DDB	2 E	20	54	79.-Ty	
94	DDF	70	65	20	$53 \mathrm{pe}-\mathrm{S}$	
95	DE3	20	74	6F	20-t o-	
96	DE7	73	74	61	72 star	
97	DEB	74	00		t @	
98	DED	CD	69	00	CALL KBD	Call S/R to examine keyboard
99	DF0	FE	53		CP S	Is it S?
100	DF2	20	F9		J RNZ -5	Jump back until S is typed
101	DF4	EF	1E	00	RST40	Clear screen
102	DF7	3A	61	OE	LD A, 0E61	
103	DFA	B7			OR	Test marker
104	DFB	20	1E		JRNZ + 32	If marker, set jump on to line 118
105	DFD	00			NOP	
106	DFE	11	CD	08	LD DE, 08CD	Point at screen
107	E01	21	A8	OF	LD HL, 0FA8	Point to message
108	E04	CD	A0	OE	CALL DISPLAY	Display 'Type H. .
109	E07	11	4D	09	LD DE, 094D	Point at screen
110	E0A	CD	A0	OE	CALL DISPLAY	Display 'Type E. . .'
111	E0D	C3	A2	OD	JP 0DA2	Return to line 69
E						
112	E10	FE	45		CP E	Is it E?
113	E12	20	32		JNZ + 52	If not E , jump on to M
114	E14	3E	01		LD A, 1) Set marker to stop at
115	E16	32	61	OE	LD 0E61, A	end of magazine.
116	E19	81			ADD C	Add 1 to
117	E1A	4F			LD C, A) changecount.

118	E1B	EF 1E	20	53 RST40-S
119	E1F	54 4F	50	50 T OPP
120	E23	49 4E	47	20 I N G -
121	E27	4154	20	45 A T-E
122	E2B	4E 44	20	$4 \mathrm{FND}-\mathrm{O}$
123	E2F	4620	4D	$41 \mathrm{~F}-\mathrm{MA}$
124	E33	4741	5A	49 GA Z I
125	E37	4E 45	00	NE@
126	E3A	11 CD	08	LD DE, 08CD
127	E3D	21 A8	OF	LD HL, OFA8
128	E40	CD A0	OE	CALL DISPLAY
129	E43	C3 A2	OD	JP 0DA2
M				
130	E46	FE 4D		CP M
131	E48	CA 00	00	JPZ 0000

OTHER KEY
132 E4B EF 5752 4F RST40 W R 0
133 E4F 4E 4720 4BNG-K
134 E53 $45 \quad 59 \quad 20 \quad 20 \mathrm{E} \mathrm{Y}$ - -
135 E57 $2020 \quad 00$ - - @
136 E5A C3 CA OD JP 0DCA
137 E5D E7 E7 E7 RST RST RST

VARIABLES
138 E60 xx
139 E61 xx
140 E62 30
141 E63 $x x$
CHANGECOUNT MARKER SHORTCOUNT

142 E64 xx
DOUBLECOUNT
CHANGEOVER
143 E65 08
VIEWTIME
144 E66 E7 E7 E7 E7 RST
145 E6A E7 E7 E7 E7
146 E6E E7 E7

INITIALISE VARIABLES
Sets the above variables at the start
of the program

147	E70	AF			XOR A
148	E71	32	60	OE	LD 0E60, A
149	E74	32	61	OE	LD 0E61, A
150	E77	32	64	$0 E$	LD 0E64, A
151	E7A	$3 E$	30		LD A, 30
152	E7C	32	62	OE	LD 0E62, A
153	E7F	87			ADD A, A
154	E80	32	63	OE	LD 0E63, A
155	E83	C3	OA	OD	JP0D0A
					RST
156	E86	E7	.	.	

[^0]Clear screen. Display message

Point at screen
Point to message
Display 'Type H...'
Return to line 69
Is it M?
If M, return to monitor

Display message

Jump to KEYBOARD
(Breakpoint - spare locations)

Number of slide changes
Set to stop at end of magazine
Length of forward slide change pulse.
Length of backward slide change pulse.
Used to exchange long and short pulses.
Time for which each slide is displayed.
(Breakpoint - spare locations)

Clear A
Clear CHANGECOUNT
Clear MARKER
Clear CHANGECOUNT
Set pulse length in A and store in SHORTCOUNT.
Double pulse length count Store in DOUBLECOUNT Jump back to DISPLAY INSTRUCTIONS. (Breakpoint - spare loactions) NOTE: the value of E7B can be changed to provide pulses of suitable length for the projector being used. E65 can be changed to vary the time for which each slide is displayed.

These delays are incorporated to slow down the rate at which

159	E9D CD 3500	CALL KDEL		
160	EA0 23		INC HL	
161	EA1 7E		LD A, (HL)	
162	EA2 FE	FE		CPO
163	EA4 C8		RETZ	
164	EA5 12		LD DE, A	
165	EA6 13		INC DE	
166	EA7 18	EE	JR -16	
167	EA9 E7	.	RST	

characters appear on the screen tor the first time.
Point to next character
Pick up next character
Is it O?
If so, return
Display character
Point to next screen position
Jump back to DISPLAY (NB:
Jump is changed by next S / R.
(Breakpoint - spare locations)

MODIFY DISPLAY

168	EB0	$3 E$	F7		LD A, F7
169	EB2	32	A8	OE	LDOEA8, A
170	EB5	EF	1 E	00	RST40
171	EB8	C3	73	OD	JP 0D73
172	EBB	E7	\cdots	.	RST

Load new jump displacement
Modify jump instruction (line 166)
Clear screen
Return to line 48
(Breakpoint - spare locations)

CHECK NUMERIC

Is character alphabetic?
Return if numeric
Display message

Pop to decrement stack pointer
Put return address in HL
Push return address onto stack
Return
(Breakpoint - spare locations)

Considering a Microcomputer?

Be Sure to Check Out the Product Offerings of the World's Largest Full Line Microcomputer Company.

All Ohio Scientific machines come with microcomputing's fastest full feature BASIC-in-ROM or on-Disk for instant use.
\section*{Challenger ISeries}
Minimum
Configuration
Base
Economical computer systems that talk in BASIC Ideal for hobbyists, students, education and the home. Superboard Il-World's first complete system on a board including keyboard, video display, audio including keyboard, video display, audio cassette. BASIC-in-ROM and up to 8K RAM
Challenger IP-Fully packaged Superboard II with 4KRAM £ 238 power supply
Challenger IP Disk - Complete mini-floppy system 16K RAM £ 865 expandable to 32 K RAM
K RAM

Challenger IIP Series
Ultra high performance BUS oriented microcomputers for personal, educational, research and small business use.

-4P -The professional portable	4K RAM	£ 404
$\mathrm{C} 2-8 \mathrm{P}$ - The world's most expandable personal machine for business or research applications	4K RAM	£ 548
C2-4P Disk - The ultimate portable	16 K RAM	£1050
C2-8P Single Disk-Ideal for education, advanced personal users, etc.	16 K RAM	£1199
C2-8P Dual Disk - Most cost effective small business system	32K RAM	£1790

Challenger III The Ultimate in Small Computers

The unique three processor system for demanding business, education, research and industrial development applications.
C3-S1-World's most popular 8" floppy based
microcomputer
C3-OEM - Single package high volume user version
of C3-S1
C3-A - Rack mounted multi-user business system
directly expandable to C3-B
C3-B-74 million byte Winchester disk based system
World's most powerful microcomputer
C3-C - 29 million byte Winchester disk based system.

32 KRAM dual floppys 32KRAM £2334 dual floppys 48 K RAM $£ 3403$
dual floppys 48K RAM
£8654
dual floppys
48 KRAM
$£ 6320$

Full Business and Data base Software

OS.AMCAP - A complete small business accounting package
£ 656 including inventory, invoicing, $A / R, A / P, C R, C D$, general ledger and P/L
OS.DMS -Data base Management System designed specifically
£ 175
for small business information management.
-DMS based modules for Inventory/order, A/R \& A/P.
£ 175 General Ledger, personnel/payroll, Query, Word each

WP-2 Processing
WP-2 -Complete word processing system with character

justification, global editing, paging, text justification, proportional spacing and hyphenation.

- ALL PRICES ARE EX VAT

OHIO SCIENTIFIC also offers you the broadest line of expansion accessories and the largest selection of affordable software!

Compare the closest Ohio Scientific Model to any other unit you are considering. Compare the performance, real expansion ability, software and price, and you will see why we have become the world's fargest full line microcomputer company

WE ARE LOOKING FOR DEALERS THROUGHOUT EUROPE PHONE MARK STRATHERN ON 01-981 3993

Ohis Momstan nom intur new ovel

Some interesting quirks of SC/MP programming that make life easier

0ne of the more useful - and unusual - methods of addressing in the SC/MP microprocessor is the ability to operate memory reference instructions on a datarelative basis. As an example, when maintaining a multiple seven segment display in software, it is convenient to keep a look-up table of display patterns. If the number 5 , for example, were required to be displayed, then the pattern represented by the hex byte 6D would be sent to the display.

Obtaining this type of information from a table is normally done in an indexed mode of operation, using one of the pointers. The simplest way is as shown in program 1, but this requires that the table starts at XX00 (Hex). For a table located anywhere in memory, program 2 could be used. (Note all programs assume that any registers required for other working have already been saved on stack; the contents of A are also lost!)

Program 3 gives the solution using the Extensionrelative mode of operation where the data is fetched or stored at a location relative to the contents of the E register. Using this method the table can be placed in the logical position, that is, at the end of the program or sub-routine which requires the table. The only limitation is that the table may not be more than 127 bytes above the LD - E-REL instruction.

Conditional Jumps

There are occasions in a program when several decisions have to be made and sub-routines or jumps performed according to the value of specific data. Where the data is of a sequential nature and the sub-routines can be contained between $x \times 00$ and $x x F F$ locations, program 4 can be used.

An example is entering a control letter A to F from a hexadecimal keyboard, the control letter being used to determine which sub-routine to use (E for Examine, F for File, C for Cancel, etc.) It is again assumed that any register contents required for later use have been saved, and that data fetched is transferred to the program counter, thus effecting a jump.

Should a true sub-routine be required, with a return to the main program, then program 5 can accomplish this. It is assumed that P3 HI has already been set.

Where it is required to increment or decrement a pointer by a variable amount, the instruction LD @ EREL PTR can be used, where the displacement is again contained in E. Again, the contents of A are destroyed. However, if the data is required to be fetched from a decremented location, then this is accomplished by this one instruction, since the pointer is decremented before data is fetched, as normal. For the incremented case, the data has to be fetched by a separate LD instruction, as the pointer is incremented after data has been fetched from the current location.

Fetching Double-Byte Data

When fetching double-byte data, as, for example, in loading a sub-routine address which could be any location in memory, the table can be arranged for easiest access in one of the following ways. The shortest and simplest, program-wise, is program 6, where the table contains all the high addresses in
the first part of the table, and all the low addresses in the second half (or vice versa). The drawback with the program is that the number of addresses have to be known when writing the program in order to set the pointer increment value and to assign the table values correctly. Where the table is to be added to at later times, then program 7 allows for a table length of up to 128 double bytes. Program 6, on the other hand, can handle a table of over 200 double bytes, and can be adapted to extend to almost any number of byte lengths.
(Note that the instruction ORE is used to add data to displacement rather than ADE. This saves setting or altering the carry/link bit).

Program 1 : Data is in A ; Table at XX00

XPAL PI	DATA BECOMES PI LO	
LDI	P1 HI	
XPAH	P1	P1 CONTAINS TABLE START ADORESS
LD	P1	FETCHPATTERN

Program 2: Data is in A; Table anywhere in memory

	ST	-1 P2	SET COUNTER ON STACK
	LD1		
	$\begin{aligned} & \text { XPAH } \\ & \text { LDI } \end{aligned}$	P1	SET PI TO TABLE START ADDRESS (-1)
	XPAL	P1	
ADIUST	LD	8+1 P1	INCR TABLE PTR
	DLD	-1 P2	DECR COUNTER
	INZ	ADJUST	If COUNTER NOT ZERO, LOOP
	LD	P1	FETCHPATTERN

Program 3 : Data is in A ; Table at end of S / R

02	CCL	
F4XX	ADI	
01	ADO DISPLACEMENT FOR TABLE	
CTART ADDRESS (COUNTED FROM LD INSTRUCTION)		
COBO	LD	S-REL
		SET DISPLACEMENT VALUE INE
		FETCHPATTERN

Program 4 : Data is in A; Table at end of S / R

02	CCL		ADD DISPLACEMENT FOR TABLE
F4XX	ADI		START ADORESS
01	XAE		DISPLACEMENT TOE
CO80	LD	E-REL	FETCHS/RADDRESS LO (-1)
30	XPAL	P.C.	CHANGE PROGRAM COUNTER

Program 5 : Data is in A ; Table at end of S/R

02	CCL		ADD DISPLACEMENT
F4XX	ADI		SET IN E
01	XAE		E-REL
C080	LD	FETCH ADDRESS LO	
33	XPAL	P3	SET S/R PTR (LO)
$3 F$	XPPC	P3	GOTOS/R

Program 6: Data is in A ; P1 is assumed set to table location 00 Program is set to address 16 double bytes

01	XAE		SET displacement
C180	LD	E-REL P1	FETCH FIRST BYTE
37	XPAH	P3	SET P3 HI WITH FIRST DATA
C510	LD	e + 10 Pl	
${ }_{3} 180$	${ }_{\text {XPAL }}$	${ }_{\text {P3 }}$-REL. P1	FETCH SECOND BYTE
$3{ }^{33}$	XPPAL	${ }_{\text {P3 }}$	GO TO S/R

Program 7 : Data is in $\mathrm{A} ; \mathrm{P} 1$ is assumed set to table location 00
Hi \& Lo data are sequential in table

EqUIVALENT TO SHIFT LEFT ONE
equates to 'multiply by 2'

FETCH FIRST BYTE
LOAD TO P3 HI
INCREMENT DISPLACEMENT TO SECOND BYTE
FETCH SECOND BYTE
LOAD TO P3 LO

CALENDAR CALCULATOR

The following program was inspired by Mr. Hiscroft's calendar program (see CT August). The program uses an algorithm based on the following knowledge. Most people know that a leap year is divisible by four, however it is also true that a leap year that starts on a Monday will be 28 years away from the next leap year starting on a Monday, the same is true for the other days of the week. Thus if the year is divided by 28 the remainder will indicate which day of the week the year starts on.

The form of the calendar presented is often called a 'Year Planner' and was originally designed for a college open

THE PROGRAM LISTING

```
5 FOFF=1TO1SNLFFINT" "*NE:ITH
    1以FCOFM=1703
2A REMC,F14, A25, F, E14, E2F, B,C14, E2%,C, [1%, [21,[,
CA REMCIFII,
CLFFINT"
cELFFINT"""
AGFOR E = 1 TO =1
501FE:ATHEN. 52..005.|Eこ00 .GOT060
52 LFFINT"
```



```
E2 LPF:NT"
```



```
FZIFFI!T*.
```



```
82 LPRINT" "
GOLFFINT"'MNEXTE
OS FDFS=1TOZ3\LFFINT NEXTS
```



```
2G0 LFFINT" "E, RETHFN
1909 DATH" JAIUJRF", "Y", 31. "FEBFUA", "RY", 29, "MFFCH","", 31
1GMIL.FTF"AFRIL", "", 30, "MFY","", 31, "JUME", "", 30, "JULY", "", ב1
190ZL,ATG"RIMUST","", 31, "SEFTEM", "EER", 3Q, "OCTIBE", "R", 31
1@QZCHTF"NOVEME", "EF", 30. "DESEME". "ER". 31
24.45 ENL.
```

day. Each date is preceded by a colon ':', except for Sunday which is preceded by an asterisk.

As the program was written on an EDUSystem 50 BASIC it has some points to note if you wish to use it on other systems. Since the language was a compiler if in an IF. . .THEN statement the condition is false the next statement is executed and not the next line. Also strings are limited to six characters, hence the broken up DATA statements. The program was designed to output to a lineprinter, hence the LPRINT statements and line 95 which centralises the printout.

The program has some limitations. It is only valid for dates in Gregorian form and does not account for the 11 days lost in September 1752. However within these restrictions it will calculate calendars between 32768 BC and 32767 AD.

1973	197\%	1979	1979
MaY	JUNE	गul\%	muilust
1	1	* 1	1
2	2	2	2
3	+ 3	3	2
4	4	4	-
5	5	5	* 5
$+6$	6	6	ϵ
P	\%	7	?
8	8	+ 8	8
9	9	- 9	9
10	+ 10	16	10
11	11	11	11
12	12	12	- 12
- 13	13	13	12
14	14	14	14
15	15	- 15	15
16	16	16	16
17	- 17	17	17
28	18	18	18
15	13	19	- 19
20	20	20	- 20
21	21	21	: 21
22	22	+ 22	22
23	- 22	: 23	23
24	- 24	24	24
25	25	25	- 25
26	26	26	+ 26
- 27	27	27	- 27
28	- 28	28	28
29	29	* 29	29
30	30	36	30
31	:	31	31
1979	1979	1979	1979
SEPTEMEER	OCtOEER	NOVEMEER	DECEMBEF
1	1	: 1	1
- 2	: 2	: 2	* 2
3	: 3	: 3	: 3
4	: 4	* 4	- 4
5	- 5	: 5	: 5
6	- 6	: 6	- 6
$?$	- 7	: 7	: 7
8	- 8	- 8	- 8
- 9	- 9	- 9	- 9
10	: 10	- 10	10
11	: 11	* 11	11
12	: 12	12	12
13	: 13	: 13	13
14	* 14	- 14	14
15	: 15	- 15	: 15
- 16	: 16	- 16	+ 16
17	- 17	: 17	17
18	-18	+18	18
19	- 19	- 19	19
28	+ 20	- 28	20
21	- 21	- 21	: 21
22 $+\quad 23$	- 22	- 22	- 22
24	23 $+\quad 24$	$\begin{array}{r}23 \\ \hdashline \quad 24\end{array}$	+23 +24
25	- 25	+ 25	- 25
26	- 26	: 26	- 26
27 28	- 27	: 27	- 27
28 29	- 28	- 28	- 28
29 +38	29 $+\quad 30$	\% 29 $: 30$	+ 29 $+\quad 38$
	- 31	:	: 31

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75

($£ 26.85$ without character generator) inc. p \& p.
Display up to $1 / 2 \mathrm{~K}$ memory (32 lines $\times 16$ chars, with character generator; or 4096 spot positions in graphics mode) on UHF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. $£ 6.10$ inc. p \& p.
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here

CASSETTE INTERFACE MODULE.

\&7.25, inc. p \& p.

Store and retrieve programs on any cassette recorder. Use for serial transmission down single line at up to 110 baud (teletype speed), e.g. over telephone line, and to communicate between two or more MK 14s

MK 14 MICROCOMPUTER KIT
§46.55 inc. p \& p .
Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8×512-byte
PROM, 256-byte RAM, and optional
16-lines I/O plus further 128 bytes of RAM. Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology. Designed for fast, easy assembly; supplied with step-by-step instructions.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, CAMBS., CB2 1SN. Tel: 0223311488.

To order, complete coupon and post to Science of Cambridge
Return as received within 14 days for full money refund if not completely satisfied
To: Science of Cambridge Led, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Please send me:
\square MK 14 standard kit @ $£ 46.55$
\square Extra RAM (13) $[4.14$ per pair. \square RAM I/O device @ $£ 8.97$.
aVDU module including character generator (a) $£ 33.75$.

I enclose cheque/MO/PO for $£$ \qquad Name
Address (please print)

Cassette interface module (a) 27 \square PROM programmer (a) 111.85 . \square Power supply (1) $£ 6.10$
\square Full technical details of the MK 14 System, with order form.
All prices include $\mathrm{p}+\mathrm{p}$ and VAT.
(total).

PROM PROGRAMMER.

\&11.85 inc. p \& p.
Use to transfer your own program developed and debugged on the MK 14 RAM to PROM 74S571) to replace SC10S monitor for special applications, e.g. model railway control. Software allows editing and verifying

AND SOME MORE BOOKS！

THE COMPANY FOR YOUR MICROCOMPUTER BOOKS，MAGAZINES AND SOFTWARE

Here are a few books that are new to our range
Computer Music
£6．75
The best music related articles from issues of BYTE magazine Introduction to TRS－80 Graphics
Take My Computer Please

Light hearted fiction
8080／8085 Software Design
Programming Techniques：Simulation
Theoretical and practical applications Buyers Guide to Microsoftware
the vendors and their
software，as well as other valuable information
Microcomputer Potpourri
$£ 1.75$
A handy，compact general reference book for the beginner 32 BASIC Programs for the PET
$£ 10.10$
On Computing
A new quarterly magazine brought out
by BYTE Publications for hobbiest

HOW TO ORDER：Send Cash or Credit Card No．to Room CT，L．P．Enterprises
8／11 Cambridge House，Cambridge Rd
Barking，Essex．IG11 8NT．01－591－6511
Orders or enquiries welcome
Send SAE for our complete ranige
 of books，magazines and software

6800 Programming for Logic Design 8080 Programming for Logic Design Z30 Programming for Logic Design	$\begin{aligned} & 58.30 \\ & \mathrm{f} .30 \\ & \mathrm{fE} .30 \end{aligned}$
More 8ASIC Computer Games	E5．50
BASIC Computer Games	c5．00
What To Do After You Hit Return	¢8．95
9080 Galaxy Game	E5．95
SUPER－WUMPUS－A game in 6800 Assembler code and BASIC	［4．25
First Book of KIM	67.00
Computer Rage（A Board Game）	66．95
Artist and Computer	C3．95
How to Profit from Your Personal Computer	¢5．50
Games．Tricks and Puzzies for a Hand Calculator	E2．49
Introduction to Personal and Susiness Computing	［4．95
Getting Involved with Your Own Computer	44.75
280 Instruction Handbook	2.95
8080 Programmers Pocket Guide	c1．95
8080 Hex Code Card	¢1．96
8080 Octal Code Card	¢1．95
Best of BYTE	ז8．96
Scelby BYTE Primer	¢8．95
Best of Creative Computing Vol． 1	¢6．95
Best of Creative Computing Vol． 2	¢6．95
Best of MICRO（issues 1－6 of Micro Magazine）	E5．50
280 Assembly Language Programming	56.45
6502 Assembly Language Programming	¢6，45
Microcomputer Programming 6502 lby 2ACS）	67．95
6502 Applications Book	67．95
8080 A／8085 Assembly Language Programming	¢6．45
6800 Assernbly Language Programming	¢6．45
3080 Software Gourmet Guide and Cookbook	¢8．95
6800 Software Gourmet Guide and Cookbook	¢8．96
Programming the 6502 （by Foster）	c6．75
6800 Tracer－An aid to 6800 Program Debugging	£3．95
Program Design	¢4．25
Programming Techniques：Simulation	¢4．25
PIMS－AL Database Management Systern	¢5．95
SCELBAL High Level Larguage Supplements BASEX－A Simple Language + compiler for the 8080	$\begin{array}{r} £ 15.00 \\ £ 5.50 \end{array}$

$80 e 0$ Programmers Pocket Guide

Best of BYTE

Scelby BYTE Primer
Best of Creative Computing Vol． 1
£6．95
Best of Creative Computing Vol． 2

280 Assembly Language Programming

 6502 Assembly Language ProgrammingMicrocomputer Programming 6502 （by 2ACS）
080 A 8085 Assembly Language Programming

6800 Software Gourmet Guide and Cookbook
Programming the 6502 iby Foster
6800 Tracer－An aid to 6800 Program Debugging
Program Design

PIMS－A Database Management Svstern
BASEX－A Simple Language＋compiler for the 8080

the new TEXTIE MARK FIUE
 nascom 1 word Frocessor

：powerful features include：
＊hord mrap－round on up to 120 column line
＊auto lateral offset moves page sidemays
＊FULL PRINTER CONTROL arsin－spacins－lensth
＊POWERFUL EDITING，Latchable shift etc．，etc．
＊relocatable error checked tape read \＆hrite
ON CASSETTE WITH DOCUAENTATION P／P ONLY 13.50
REQUIRES T4 AND A MINIMUM OF BK RAM EXPANSION
for aciults amusement only

soothsayer

水水水水水水水水
BASED ON ANCIENT WRITINGS＂soothsayer＂HAKES AN IDEAL PARTY GAME ANY TIME OF THE YEAR ANSWERING QUESTIONS ABOUT MARRIAGE，PERSONAL WEALTH，ETC． USES LARGE AMOUNT OF DATA IN FORHING ITS REPLIES BUT UILL RUN ON AN UNEXPANDED NASCOM 1．ASK YOUR FRIENDS TO JOIN YOU IN SOME OF THE MOST ENJOYAKLE COMPUTER ENTERTAINMENT AVAILABLE．SELLS AT 6．50．

ORIEE TODAY IITRECTLY FROM： THE SOFTWARE PURLISHING COMPANY QA CHURCH SIDE，NANSFIELD，NOTTS Teleshone：（0623） 29237

TELEPHONE ORTIERS EY ACCESS
Word Processor now includes direct entry colour graphics．Telephone for details．

BUY noscom-2 NOW AND GETA FREE 16K RAM BOARD

The lack of availability of the MK4118 RAMs has seriously delayed the launch of the Nascom 2, so we have decided to relaunch the product with an offer fe: w will be able to refuse. The Nascom 2 will be supplied without the optional user 4118 s . Instead, we will supply a 16 K dynamic RAM board and the interconnect for the NASBUS absolutely FREE. This board allows further expansion to 32 K . Also, when the 4118 s become available, customers taking advantage of this offer can have the 8 K for just $£ 80$ (plus VAT)

Meanwhile, the empty sockets on the Nascom 2 can be filled with 2708 EPROMs allowing dedicated usage, now with 16 , or 32 K of extra RAM. All the other features of the Nascom 2 are available and these include

MICROPROCESSOR

Z80A 8 bit CPU which will run at 4 MHz but is selectable between $2 / 4 \mathrm{MHz}$.

HARDWARE

$12^{\prime \prime} \times 8^{\prime \prime}$ PCB through hole plated, masked and screen printed. All bus lines are fully buffered on-board. PSU: $-12 v, .5 v,-12 v,-5 v$

MEMORY

- 2K Monitor-NAS SYS 1 (2KROM) - 1 K Workspace/User RAM - 1 K Video RAM 8K Microsoft BASIC (MK 36000 ROM)

INTERFACES

New 57-key Licon solid state keyboard. Monitor/domestic TV On-board UART provides serial handling for Kansas City cassette interface ($300 / 1200$ baud) or the RS232/20mA teletype interface Totally uncommitted PIO giving 16 programmable I/O lines.

The Nascom 2 makes extensive use of ROMs for on-board decoding. This reduces the chip count and allows easy changes for specialised industrial use of the board. On-board link options allow reset control to be reassigned to an address other than zero

The 1 K video RAM drives a 2 K ROM character generator providing the standard ASCII characters with additions - 128 characters in all. There is also a socket for an optional graphics ROM on-board.

NASCOM UK DISTRIBUTORS

ADDA COMPUTERS
Ealing, London W5 Tel:01-5795845 BITS \& P.C.S Wetherby. Tel: 093762592 BUSINESS \& LEISUR MICROCOMPUTERS Kenilworth. Tel:0926512127 THE BYTE SHOP Ifford, Essex Tel:01-5542177 London W1. Te: 01-636 0647 COMPUTERLAND Nottingham. Tel:0602 40576 Manchester 1. Tel: 061-236 4737 Birmingham. Tel:021-6227149 Glasgow. Tel. 041-2217409

target electronics

 BristolTel:0272421 196 THE CAMERA CENTRE Barrow-in-Furness. Tel 022920473 COMP SHOP New Barnet. Herts. Tel:01-441 2922 COMPUTER MANIA Great Milton. Oxon. Tel Great Militon 729 C. C. ELECTRONICS Torquay Tel 080322699 DATRON MICRO CENTRE

Sheffield.

Tel: 0742585490
ELECTRONIC SERVICES
Sheffield
Tel:0742668767
electrovaluelto
Egham. Surrey.
Tel:078433603

ELECTROVALUE LTD Manchester M19 Tel 061-432 4945 ELEY ELECTRONICS Glenfield. Leics. Tel:0533 871522 HAPPY MEMORIES Southampton. Tel 070339267 HENRY'S RADIO London W2. Tel:01-7231008 INTERFACE COMPONENTS Amersham, Bucks Tel:02403 22307
A \& GKNIGHT Aberdeen. Tel:0224630526

LOCK DISTRIBUTION
Oldnam Lancs Tel:061-6520431 MICRODIGITAL Liverpooil L2. Tel:051-227 2535 PHOTO ACOUSTICS Watford. Herts Tel: 092332006 PIPS COMPUTER SERVICES Whitley Bay Tel. 0632482359 P\& O COMPUTERS Belfast. STRATHAND Glasgow Tel:041-5526731

The final part of our popular series on BASIC programming

We started this series with algorithms and flow charts, and that is how we finish. In this, the last part of our BASIC series, we look at a flow chart and program for the binary search algorithm presented last month, and we also take a look at a very efficient sort routine.

Fig.1. The Binary search flowchart.

Binary Search

A flow chart to perform the Binary Search algorithm might be as Fig.1. We assume that this routine is being used as part of a larger program so that U and L already have values. U is the pointer for the upper limit of the interval, yet to be searched and L is the pointer for the lower limit on this interval. So, for example, if the list to be searched contains 100 items, then U would be 100 and L would be 1 . Flow
chart box 1 asks for a value which will be assigned to the variable T. This is the number that we are going to search for in the list. Flow chart box 2 is looking to see if our input value is contained in the last position of the list. If it is, we branch through box 3 to box 6 to print the message saying that we have found the required item and to give its position (we will look at why this box is needed later).

If T is not in $A(U)$ then we move on to box 4 . This starts the algorithm proper by calculating the mid-position in the list and assigning this value to the variable S . A check is then made by box 5 to see if $\mathrm{A}(\mathrm{S})$ - the contents of the list position just calculated - is equal to T . If it is, we move to box 6 to indicate our success in locating item T, otherwise we move on to box 7 . Box 7 is asking whether the upper and lower list pointers are equal because if they are then there is no point in trying to locate T anymore as there are no more positions between U and L to look in, so we would move to box 8 and indicate that T was not contained in the list. If U and L are not equal, the next task is to decide if T is contained in the interval between U and S or between L and S . As the list is in numerical order, this is achieved simply by comparing T with the current value of $\mathrm{A}(\mathrm{S})$. If T is greater than $\mathrm{A}(\mathrm{S})$ then T is contained in the lower half of the list and we bring the upper bound U down to S (flowchart box 11). We then branch back to box 4 to calculate the midposition of the new interval (S) and start over again.

This process continues until we either find the item T somewhere in the list and print this fact or prove that the item T is not contained in the list at all. A program segment with the function of the flowchart of Fig. 1 is given below.
100
110
120
130
140
150
160
17
180
190
20
210
2
2
2
2

Earlier we said that we would look at the need for flowchart box 2 in Fig.1, and we will do this now with reference to the above program. We will dry-run it with $U=3$ and $L=1$ giving us a list of 3 items. (Say $\mathrm{A}(1)=10, \mathrm{~A}(2)=12$ and $\mathrm{A}(3)=52$). Program line 120 above corresponds to box 2 in Fig. 1 and we will omit it mentally and see what happens when we input a value of 52 for T in line 110 above. Line 130 assigns a value of 2 to $S(L+U=4,4 / 2=2, \operatorname{INT}(2)=2, S=2)$. T is not equal to 12 , the value of $A(2)$ in line 40 and so we move on to line 150. U is not equal to L, and so on to $160 . T$ is greater than $A(2)$ which shows that if T is contained in the list at all it must be in the upper half.

We now set L to S (line 190) which gives $L=2, U=3$. Line 200 takes us back to line 130 where a new value of S is calculated. $(\mathrm{U}+\mathrm{L}=5,5 / 2=2.5, \operatorname{INT}(2.5)=2, \mathrm{~S}=2)$.

Now, T is not equal to $\mathrm{A}(\mathrm{S})$ - line 140
U is not equal to $\mathrm{L} \quad$ - line 150
and T is greater than $A(S)$ - line 160
so we make $\mathrm{L}=\mathrm{S}$ (which it already is) and branch back to 130. Now we see the problem. The INT function used in line

BEGINNING BASIC

130 to calculate the mid-position of U and L will only round down to the nearest integer - it cannot round up - and consequently we can never look at the last item in the list to see if it contains T. Obviously, then, when the last list position does contain T the algorithm would not terminate without the inclusion of some test (Fig.1, box 2 for example) to see if T were contained in the last list position.

Efficient Algorithm

You may remember from last month that the binary search algorithm is much more efficient than a simple search, but it suffers from the drawback that the list to be searched has to be in ascending numerical order. The process of sorting a list into order can in itself be very lengthy, especially if we use a simple sort routine given earlier in the series. Fortunately there is a sort routine which is very efficient and is based on the merge of two sorted lists that we saw in a previous article. If you can imagine an unsorted list of eight items then this algorithm would take each of the 4 consecutive pairs of numbers in this list in turn and perform a two list merge on them which will give four pairs of numbers each of which will be in numeric order. The algorithm then takes the first two pairs thus generated and merges them to form a sorted list of four numbers and then takes the second two pairs and merges these also.

We now have two sets of four numbers, each set being in numerical order. The final process is to merge these two lists of four items into one list of 8 items and the sort is complete (see Fig.2). The flowchart of this algorithm is given as Fig.3. The program is given below.

```
REM ==MERGE SORT==
PRINT"HOW MANY ITEMS TO BE SORTED";
INPUT T
A=1
IF A > T THEN 70
A=A * 2
GOTO }4
N=A
DIMA(A/2+1),B(A/2+1),C(A+1)
FOR X=T+1 TO N
C(X)=1E30
NEXT X
PRINT"INPUT VALUES TO GO IN LIST"
FOR X = 1 TOT
PRINT X,
INPUT C(X)
NEXT X
PRINT"SORT BEGINS NOW"
D=1
A=1
B=1
C=1
FOR X = 1 TO T
B(B)=C(C)
B=B+1
C=C+1
NEXT X
FOR X=1 TO D
A(A)=C(C)
A=A+1
C=C+1
NEXT X
IF C}<>N+1\mathrm{ THEN 210
    A=1
    B=1
```

$D=1 \quad D=2 \quad D=4 \quad D=8$

12345678

Fig.2. The 'Merge-Sort' process.

Fig.3. The 'Final Programme' flowchart.

BEGINNING BASIC

```
340 C=1
350 S=A-1
3 6 0 \text { IF A(A)> B(B) THEN 400}
370 C(C)=A(A)
380 A=A+1
3 9 0 ~ G O T O ~ 4 2 0 ~
4 0 0 \quad C ( C ) = B ( B )
4 1 0 ~ B = B + 1
4 2 0 ~ C = C + 1
4 3 0 ~ I F ~ A = S + D + 1 ~ T H E N ~ 5 2 0 ~
4 4 0 \text { IF B =S +D +1 THEN } 4 6 0
4 5 0 ~ G O T O ~ 3 6 0 ~
460 FOR X = A TO S+D
470 C(C)=A(A)
4 8 0 ~ C = C + 1
4 9 0 ~ A = A + 1
5 0 0 ~ N E X T ~ X ~
510 GOTO 570
5 2 0 ~ F O R ~ X ~ = ~ B ~ T O ~ S + D ~
530 C(C)=B(B)
5 4 0 ~ C = C + 1
5 5 0 ~ B = B + 1
5 6 0 ~ N E X T ~ X ~
5 7 0 \text { IF A+B < N+2 THEN } 3 5 0
5 8 0 \text { D=D *2}
590 IF D < > N THEN 180
6 0 0 ~ P R I N T " T H E ~ S O R T E D ~ L I S T ~ I S " ~
6 1 0 ~ F O R ~ X = 1 ~ T O ~ T
6 2 0 ~ P R I N T " ~ " ; X ; C ( X )
6 3 0 \text { NEXT X}
6 4 0 ~ E N D
```


How The Sort Operates

The program as given is not as condensed or as efficient as it could be. This is to make it easier to understand. No doubt when you have worked out the details of its operation, most of you could make several improvements.

The program starts off by taking an input to the variable T. This is used to tell the program how many items are to be sorted. The next part of the program (lines 30 to 70) calculates the next power of 2 above the input value (T). This value is assigned to the variable N and is the actual number of items that will be sorted. Next items, T+1 To N, are made very large (1E30) so that after sorting they will still occupy positions $\mathrm{T}+1$ TO N in list $\mathrm{C}(\mathrm{X})$. The sort now begins. The 'INPUT' list $C(X)$ is first split up into two lists $A(X)$ and $B(X)$ by lines 210-310. This is done in rather a special way. The variable D is used to indicate the number of values in $A(X)$ and $B(X)$ that are to be merged in each step (see Fig.2).

The first D (initially $D=1$) items in $C(X)$ are assigned to the first D items in $A(X)$, then the second D items in $C(X)$ are assigned to the first D items in $B(X)$, then the third D items in $C(X)$ are assigned to the second D items in $A(X) \ldots$ \ldots then $B(X) \ldots$ then $A(X)$ and so on until all of $C(X)$ has been thus assigned. Program lines 350-590 are essentially the two list merge program given in an earlier part of this series, and are used to merge sort lists $A(X)$ and $B(X)$ back into list $C(X)$ again in blocks of 2 from D.

Consider the following example:- The four item list 4123 is to be sorted. The important variables $(A(X), B(X)$, $C(X)$ and D) would take the various values given in Table 1 at various times during the execution of the program.

The Final Programme

For homework this month (which will, of course remain
unanswered as this is the last part of the series - maudlin sob) (hearty cheer, really, but you've got to sound sad, haven't you) is to work out the fine details of the above program with the aid of flowchart Fig.3.

All that remains now is for me to say that I hope you have all learned as much from reading this series as I have from writing it and that the experience has been enjoyable.

PROGRAM LINES	D	$\mathrm{A}(1)$	$\mathrm{A}(2)$	$\mathrm{B}(1)$	$\mathrm{B}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$
$110-170$	1	X	X	x	x	4	1	2	3
$180-310$		4	2	1	3				
$320-570$						1	4	2	3
580	2								
$180-310$		1	4	2	3				
$320-570$						1	2	3	4
580	4	-sort complete							

Table 1. The ' X ' in the table is a 'don't care'
value.

TRANSAM mimicicl

PINGLE BOARD COMPUTER

The choice is yours! One of the most versatile computers around today Using the Triton main PCB as a starting block. The single board holds CPU, VDU, 8 K Memory tape I/O, power supply and comes complete with case, full keyboard, 64 graphics. The Triton System builds in many ways to suit your budget and requirements. All parts are available separately. The system is easy to expand and is well supported with comprehensive documentation

NEW FIRMWARE OPTIONS

with 3 K Resident Firmware. 1K Monitor and $2 \mathrm{~K} £ 286$ Tiny Basic. Complete Kit.
 Triton with 7 K Scientific Bassc, complete wit Motherboard - 8K Eprom Card and 2 K Montor
 of full basics.

Triton with Resident Pascal in Eprom new TCL Pascal Compier in 20 K on board Includes 4 K f611 Monitor/Editor. A total of 24 K of Firmware.

New CP'M Compatible Disk interface for Triton Will drive up to $4 \times 5 \%$ or $8^{\prime \prime}$ Shuggart drives Single or double densify or sided Requires mini plenty of CP Tam the ultumate in hexbily and onseater

NOW ON TRITON!

*TCL EXTENDED 8K BASIC
*TCL PASCAL COMPILER
*CP/M DISK INTERFACE
TCL Pascal. Also available to run under CP/M, £92 on 8^{*} disk
CP/M is the Trade Mark of Digital Research
TGL is the Trade Mork of TCL Software Products

EXPANSION MOTHERBOARD

TRITON. Expand your Triton simply and easily with our new 8 -slot motherboard complete with its own P.S.U. takes 8 plug in Euro cards. Plug-in 8k RAM card and Eprom cards now available. Kit complete with PSU +1 set connectors.

8 SLOT
 64 way DIN Co

8K RAM CARD

Triton 8k Static Compl RAM card kit Kir uses 2114L low $£ 97$ power 4 k static RAMS. On board regulation. Memory jump select. PCB only $£ 15$
RAMS $£ 5.50$ each Kit less RAMS $£ 35$

8K EPROM CARD

Triton 8k Eprom card kit designed to take up to (1k×8)
PCB only $£ 15$ Kit less Eproms $£ 31$ Eprorns (blank) $£ 9$

S100 BOARDS		ITHACA DPSI		
8k Static RAM board (4550ns)	${ }^{\text {E } 123.75}$	Pascal/Z		dealerl
	¢131.25	build your own		
	${ }_{6}^{1515375}$	Pascalmicto		
	Evailible	systern. IEEE-		
Video display board (64×16, 128		SIDO bus system,		
Asciil ${ }^{\text {Disk controller board }}$	${ }_{\text {c10 }}^{16138.75}$	trame. Suppors K 2.		
K2 disk operating system $8{ }^{\text {\% }}$ disk	f56. 25	${ }_{\text {asse }}$		
Assemble/z Macro Assm 8 " disk	37.50			

PCB CONNECTORS

Edge connectors gold contact double sided PCB connectors

connectors				
I'	Price	156 "	Price	
2244	f3 20	6:12	C1 25	
25.50	¢3.60	1020	E1 50	\%
28/56	E3 90	12/24 (Pet)	12.00	\%
30/60	f4.15	15/30	C2. 20	8
85/70	¢4.60	18/36	22.30	흘
36/72	£4.75	28/56	22.65	,
40/80	£5.00	36/72	E3.30	15
43/86	¢5.50	43/82	E3.90	
50/100 [S100\}	E5.80		E4.60	+ VAT

TRAP! Triton resident assembly

 Luks via the L6. t monitor and new scientific basic io make Triton a stand alone development srstem. Trap CPAOM package in EPROM and f80 including documentation. 8×2708 oniv - EDITOR - ASSEMBLER -DISASSEMBLER -SYMBOLTABLE -CREATE-BREAKPOINT

- SINGLE STEP
-TAACE
-PAOGRAMME LOAD *MONITOR

DEVELOPMENT SYSTEM

COMPONENTS 74LSXX						
SNT4LS00N	18	5NT4LS54N	21	SNT4LS136N . 0	SN74LST94AN1 89	
SN74L501N	18	\$N74LSESN	21	SN74LS138N . 75	SN74LS 19SAN	
SN74i.502N	20	SN\%4LS56N	21	SN74.ST39N.万3	SNT4LS 198N 1.20	SN74LS327N 2.55
SN74L503N	18	5N74LS63N	1.50	SN74 S145N 120	SN74LSt97N 120	SN74LS S SCN 1.35
5N74LSOAN	2	SN74L573N	36	SN74LSIAPN 175	SN7aLS 221 N 125	SN7aLS353N 150
SN74LSOSN	z	SN74LS73N	40	SN74i,51SEN -85	SNT4L524EN 220	SN7aL5365N 65
SN74LS09N		SN74L575N	46	SN74L5153N 50	5NT4LS241N 190	SN74L5366N 65
5N74L509N	22	5N74LS76N	3	SN74LS154NR 160	SN74L5242N 150	\$N74L5367N ©
SNTALSTON	18	SN7als 78 N		SN74LSISEN 125	SN74LS243N 196	5N74LS3CAN . 65
SN74LS11N	2	SNT4LSSOANT		SNT4LSISEN 1.25	\$N7415244N 2.10	SN74LS373N 1.75
SN74LS12N	25	SN74LSEbN	\$ 1.10	SN74LS157N .60	SN74LS24SN3 60	\$N74LS374N 1.70
SN74LS13N		SNT4L5E6N		SNJ4LS168N 99	SN74L.S247N 1.25	SN74L5376N 72
SNTGLSISN	8	SN74LSSON	. 65	SNT4LS160N 1.95	SN74LS248N 1.86	5N74LS377N 1.76
SNT4LSTSN	25	SN74LS9\%N	99	SN74LS161N 1.15	SN74LS249N:30	SN7415378N 1.32
SN741S20N		SNTALSS2N		SN74LS182N 1.15	SN74LS2S1N 145	SNTALS3T9N 1.40
$5 N 74.521 N$	26	SN7alsggen		SN74LSTE3N 90	SN74LS263N 125	SN74L5381N 3.65
SN742.522N	26	snjalsgsani		SN74L5164N 1.50	SN74LS257N 1.40	SN74LS306N 57
SN74LS26n		SN74LSS6N		\$N74LS165N 1,70	SN74iS250n 95	SN74LS3900 1 \%
SN74LS27N	35	SN7alsidy	39	5N74L5166N 175	SN74LS259N 145	SN7aLS3SEN 150
SNY4LS28N	35	SN74LS109N	39	SNT4LSI68N 1 os	SN7415280N 39	SN74LS395N +.80
SN744530N		\$N74LS+12N		SNJ4LSIE9N 1.96	SN74LS261N 3.50	SN74LSS396N 1.70
SN7als32N	77	SN74LS113N	46	SN74LS170N 250	SN74C S266* 39	SN74L5390N 2.75
SN74LS3ZN	79	\$N74LS 114 N		SN7a 1.1773 N 220	SN741S273N 18	SN74LS399N 1×0
SN74LS37N	2	SN744. S122N	73	SN74LS174N:15	SN7415279N 79	SN74LS424N 4.50
SN74LS3dN	2	SN74LS123N	90	SN74LS175N 1.05	SN74LS280N 1.75	SN741S445N 1.25
SN74L540N		SN14LS 124 N 1	1.50	SN74LS181N 275	SN74L5283N 1.80	SN74LS447N 1.25
SNT4LS42N	\%	SN74LS125N	65	SN74LS 190N 1.75	SN74i S290N 180	SN74LS490N 1.95
SN74L547N	. 95	SN7ALS 126 N	65	SN74LSI91N 1.75	SNTLLS2SON 1.80	SN74L5668N 95
SN74LS48N		SN74LS132N		SN74LSISEN 145	SN741.S29SAN2 20	SN741.9669N 06
SN74LSA9N	109	SN74 [\$133N		SN74LS150	\$N741. S29en 2.20	SN7415670N 2.7

TRITON DOCUMENTATION

available separately as follows, prices include p \& p
Triton manual - detailed círcuit description and constructional details plus user documentation on level 4.1 monitor and basic
L4. 1 listing - listing of 1 K monitor and 2 K tiny basic
L5. 1 user documentation on level 5.1 firmware
L5.1 listing - listing of 1.5 K monitor and 2.5 K basic L6. 1 user documentation on 7K basic interpreter Motherboard. 8K RAM and 8K EPROM constructional details 65.70
E4. 20 SAE for list of programs available for Triton.

MEMORY AND SUPPORT CHIPS - NEW LOW PRICES

HOME COMPUTING CATALOGUE

If you're in town, visit our showroom in Chapel Street, next to Edware Road tube station. We have Tritons on display plus a comprehensive range of components and accessories, specifically for personal computer users. Books, mags, tapes, data, cables plus much more. Showroom open 6 days a week. (Half day Thurs. from 1.30).

NEW

A4 size catalogue filled with our latest products 40p

ALL
PRICES EXCLUDEVAT

INSTANT SOFTWARE

This month Computing Today launches a new unique service - Instant Software. This is exactly what the title implies - programs on a plate! Each comes recorded onto a high quality cassette with full documentation and neat packaging.
Read down the lists of titles - you'll find a few surprises and some things for which you have offered sacrifices on a stone at dawn before now. All are checked and fully guaranteed. Any complaints send them back and we'll replace by return.
We think this is a revolution in reader service and one that will change the way you use your system. So why not try us out?
Orders to :- CT Software
4 Morgan Street
London E3 5AB.

TRS 80 Level 1

BUSINESS PACKAGE I Keep the books for a small business with your TRS-80 Level I 4K. The six programs included are:

General Information - The instructions for using the package.

Fixed Asset Control - This will give you a list of your fixed assets and term depreciation.

Detail Input - This program lets you create and record your general ledger on tape for fast access.

Month and Year to Date Merge - This program will take your monthly ledger data and give you a year to date ledger.

Profit and Loss - With this program you can quickly get trial balance and profit and loss statements.

Year End Balance - This program will combine all your data from the profit and loss statements into a year end balance sheet. With this package, you can make your TRS80 a working partner. Order No. 0013R 21.66.

PERSONAL FINANCE I Let your TRS-80 handle all the tedious details the next time you figure your finances:

Personal Finance I - With this program you can control your incoming and outgoing expenses.

Checkbook - Your TRS-80 can balance your checkbook and keep a detailed list of expenses for tax time.

This handy financial control package for the home requires only a TRS-80 Level I 4 K . Order No. 0027R 5.75.

Level 1\&2

AIR FLIGHT SIMULATION Turn your TRS 80 into an airplane. You can practice takeoffs and landings wiht the benefit of full instrumentation. This one-player simulation requires a TRS-80 Level I 4K, Level II 16K. Order No. 0002R 5.75.
SPACE TREK II Protect the quadrant from the invading Klingon warships. The Enterprise is equipped with phasers, photon torpedoes, impulse power, and warp drive. It's you alone and your TRS 80 Level | 4 K , Level II 16 K against the enemy. Order No. 0002R 5.75.
SANTA PARAVIA AND FIUMACCIO Become the ruler of a medieval city-state as you struggle to create a kingdom. Up to six players can compete to see who will become the King or Queen first. This program requires a 16K TRS-80 Level I \& II. Order No. 0043R 5.75.

ELECTRONICS I This package will not only calculate the component values for you, but will also draw a schematic diagram, too. You'll need a TRS-80 Level I 4 K , Level II 16 K to use:

Tuned Circuits and Coil Winding Design tuned circuits without resorting to cumbersome tables and calculations.

555 Timer Circuits - Quickly design astable or monostable timing circuits using this popular IC.

LM 381 Preamp Design - Design IC pre-
amps with this low-noise integrated circuit. This package will reduce your designing time and let you build those circuits fast. Order No. 0008R 5.75.
HAM PACKAGE I This versatile package lets you solve many of the commonly encountered problems in electtronics design. With your Level I 4 K or Level II 16K TRS-80, you have a choice of:

Basic Electronics with Voltage Divider Solve problems involving Ohm's Law, voltage dividers, and RC time constants.

Dipole and Yagi Antennas - Design antennas easily, without tedious calculations. This is the perfect package for any ham or technician. Order No. 0007R 5.75.

Level 2

TRS-80 UTILITY I Ever wonder how some programmers give their programs that professional look? Instant Software has the answer with the TRS-80 Utility I package. Included are:

RENUM - Now you can easily renumber any Level II program to make room for modification, or to clean up the listing.

DUPLIK - This program will let you duplicate any BASIC, assembler, or machinelanguage program, verify the data, merge two or more programs into one data block, and even copy Level I programs on a Level II machine. For TRS-80 Level II 16K. Order No. 0081R 5.75.
TRS-80 UTILITY 2 Let Instant Software change the drudgery of editing your programs
into a quick, easy job. Included in this package are:

CFETCH - Search through any Level II program tape and get the file names for all the programs. You can also merge BASIC programs, with consecutive line numbers, into one program.

CWRITE - Combine subroutines, that work in different memory locations into one program. This works with BASIC or machinelanguage programs and gives you a general checksum.
This package is just the thing for your TRS80 Level II 16 K . Order No. 0076R 5.75.
SPACE TREK IV Trade or wage war on a planetary scale. This package includes:

Stellar Wars - Engage and destroy Tie fighters in your attack on the Death Star. For one player.

Population Simulation - A two-player game where you control the economy of two neighbouring planets.
You decide, guns or butter, with your TRS-80 Level II 16K. Order No. 0034 R 5.75.
RAMROM PATROL/TIE FIGHTER/KLING. ON CAPTURE Buck Rogers never had it so good. Engage in extraterrestrial warfare with:

Ramrom Patrol - Destroy the Ramron ships before they capture you.

Tie Fighter - Destroy the enemey Tie fighters and become a hero of the rebellion.

Klingon Capture - You must capture the Klingon ship intact. It's you and your TRS-80 Level II 16 K battling across the galaxy. Order No. 0028R 5.75.
CARDS This one-player package will let you play cards with your TRS-80 - talk about a poker face!

Draw and Stud Poker - These two programs will keep your game sharp.

No-Trump Bridge - Play this popular game with your computer and develop your strategy.
This package's name says it all. Requires a TRS. 80 Level II 16K. Order No. 0063R 5.75.

HOUSEHOLD ACCOUNTANT Let your TRS 80 help you out with many of your daily household calculations. Save time and money with these fine programs:

Budget and Expense Analysis - You can change budgeting into a more pleasant job with this program. With nine sections for income and expenses and the option for oneand three-month review or year totals, you can see where your money is going.

Life Insurance Cost Comparison - Compare the cost of various life insurance policies. Find out the difference in price between term and whole life. This program can store and display up to six different results.

Datebook - Record all those important dates in your life for fast, easy access. The program has all major holidays already included.
All you need is TRS 80 Level If 16K. Order No. 0069R 5.75.
FINANCIAL ASSISTANT Compute the figures for a wide variety of business needs. Included are:

Depreciation - This program lets you figure depreciation on equipment in five different ways.

Loan Amortization Schedule - Merely enter a few essential factors, and your TRS-80 will display a complete breakdown of all costs and schedules of payment for any loan.

Financier - This program performs thirteen common financial calculations. Easily handles calculations on investments, depreciation, and loans.

1\% Forecasting - Use this simple program
to forecast sales, expenses, or any other historical data series.
All you need is a TRS-80 Level II 16K. Order No. 0072R 5.75.

PET

CASINO I These two programs are so good, you can use them to check out and debug your own gambling system!

Roulette - Pick your number and place your bet with the computer version of this casino game. For one player.

Blackjack - Try out this version of the popular card game before you go out and risk your money on your own "surefire" system. For one player.
This package requires a PET with 8 K . Order No. 0014P 5.75.
CASINO II This craps program is so good, it's the next best thing to being in Las Vegas or Atlantic City. It will not only play the game with you, but also will teach you how to play the odds and make the best bets. A one player game, it requires a PET 8K. Order No. 0015 P 5.75.

CHECKERS/BACCARAT Play two old favourites with your PET.

Checkers - Let your PET be your everready opponent in this computer-based checkers program.

Baccarat - You have both Casino- and Blackjack-style games in this realistic program.
Your PET with 8 K will offer challenging play anytime you want. Order No. 0022P 5.75.
MIMIC Test your memory and reflexes with the five different versions of this game. You must match the sequence and location of signals displayed by your PET. This one-player program includes optional sound effects with the PET 8K. Order No. 0039P 5.75.
TREK-X Command the Enterprise as you scour the quadrant for enemy warships. This package not only has superb graphics, but also includes programming for optional sound effects. A one-player game for the PET 8K. Order No. 0032 P 5.75.
TURF AND TARGET Whether on the field or in the air, you'll have fun with Turf and Target package. Included are:

Quarterback - You're the quarterback as you try to get the pigskin over the goal line. You can pass, punt, hand off, and see the results of your play using the PET's superb graphics.

Soccer II - Play the fast-action game of soccer with four playing options. The computer can play itself, play a single player, two players with computer assistance, and two players without help.

Shoot - You're the hunter as you try to shoot the bird out of the air. The PET will keep score.

Target - Use the numeric keypad to shoot your puck into the hom position as fast as you can.
To run and score all you'll need is a PET with 8K. Order No. 0097P 5.75.
ARCADE I This package combines an exciting outdoors sport with one of America's most popular indoor sports:

Kite Fight - It's a national sport in India. After you and a friend have spent several hours manoeuvering your kites across the screen of your PET, you'll know why!

Pinball - By far the finest use of the PET's exceptional graphics capabilities we've
ever seen, and a heck of a lot of fun to play to boot.
Requires an 8K PET. Order No. 0074P 5.75.
ARCADE II One challenging memory garne and two fast-paced action games make this one package the whole family will enjoy for some time to come. Package includes:

UFO - Catch the elusive UFO before it hits the ground!

Hit - Better than a skeet shoot. The target remains stationary, but you're moving all over the place.

Blockade - A two-player game that combines strategy and fast reflexes.
Requires 8K PET. Order No. 0045P 5.75.
DUNGEON OF DEATH Battle evil demons, cast magic spells, and accumulate great wealth as you search for the Holy Grail. You'll have to descend into the Dungeon of Death and grope through the suffocating darkness. If you survive, glory and treasure are yours. For the PET 8K. Order No. 0064 P 5.75.

Apple

MATH TUTOR I Parents, teachers, students, now you can turn your Apple computer into a mathematics tutor. Your children or students can begin to enjoy their math lessons with these programs:

Hanging - Perfect your skill with decimal numbers while you try to cheat the hangman.

Spellbinder - Cast spells against a competing magician as you practice working with fractions.

Whole Space - While you exercise your skill at using whole numbers your ship attacks the enemy planet and destroys alien spacecraft.
All programs have varying levels of difficulty. All you need is Applesoft II with your Apple 1124 K . Order No. 0073A 5.75.
MATH TUTOR II Your Apple computer can go beyond game playing and become a mathematics tutor for your children. Using the technique of immediate positive reinforcement, you can make math fun with:

Car Jump - Reinforce the concept of calculating area while having fun making your car jump over the ramps.

Robot Duel - Practice figuring volumes of various containers while your robot fights against the computer's mechanical man.

Sub Attack - Take the mystery out of working with percentages as your submarine sneaks into the harbor and destroys the enemy fleet.
All you need is Applesoft II with your Apple II and 20K. Order No. 0098A 5.75.
GOLF Without leaving the comfort of your chair, you can enjoy a computerized 18 holes of golf with a complete choice of clubs and shooting angles. You need never cancel this game because of rain. One or two players can enjoy this game on the Apple with Applesoft 11 and 20K. Order No. 0018A 5.75.
BOWLING/TRILOGY Enjoy two of America's favorite games transformed into programs for your Apple:

Bowling - Up to four players can bowl while the Apple sets up the pins and keeps score. Requires Applesoft 11.

Trilogy - This program can be anything from a simple game of tic-tac-toe to an exercise in deductive logic. For one player.
This fun-filled package requires an Apple with 20K. Order No. 0040A 5.75.

A calculator game of strategy. Will you survive long enough to torpedo the destroyer or will you be found by the depth charges first?

The game is set in the Pacific Ocean. An enemy destroyer has infringed the international boundaries, on a hostile mission. The enemy have, in addition, stolen an RAF Nimrod submarine hunter. Co-ordinated by the ship, this proves a formidable weapon; however, if you eliminate the destroyer, you also put this aircraft to rout.

Setting The Scene

You command the Royal Naval submarine, HMS Oceannought. Belonging to a new and revolutionary class of submarines, HMS Oceannought is capable of firing both, torpedos, and Polaris ballistic missiles, although on account of the modifications necessary to use both, only a single weapon may be fired at one shot. The submarine is armed with an effectively limitless supply of both torpedos and missiles! In command of HMS Oceannought, your orders are clear; annihilate the hostile destroyer before it annihilates you. The enemy is armed with ship-to-ship rockets, which he fires in salvos at intervals, although being under water, most of these cause little or no damage, being poorly aimed. Your underwater "Camouflage" also hides you from the aircraft for most of the time. However, during the course of the engagement, the hostile vessel moves inexorably on, towards you, in order to get a better fix on your position (the attacks become more frequent as the game progresses) and also to drop depth charges. Although a missile dropped immediately above the submarine at the surface of the ocean is distant enough from the submarine not to destroy it, it cannot destroy the enemy either, as he anticipates this strategy and keeps a safe distance, also keeping out of visual contact, but remaining still sufficiently close to strike with depth charges.

The game begins as you pick up a faint blip on your radar, indicating the enemy's presence in the semi-circle of sea in front of your vessel, but not revealing his location or bearing relative to yourself. Once in range the intruder follows you where ever you move narrowing the distance separating you. Up until now you have been floating near the surface, scanning with your periscope; you order the periscope down, and dive! You commence the assault immediately, starting with perhaps random shots aimed within the semi-circle of your radar sweep, but bearing in mind that the intruder is continually moving towards you, and is thus unlikely to be located at the outer fringe of radar field after several shots have been exchanged.

Escape is impossible, since surface vessels can move faster than submerged ones You must fight to the death!

User Instructions

1. To start the game, first ensure the Master Library Module is in position. Next, ensure the calculator is connected to a print cradle of the $\mathrm{PC}-100^{\prime}$ series, and check that the partition is set to 559.49 (ie press -5 2nd Op 17). Now, enter the program and data memories, either directly, or from each side of two magnetic cards.

Press A. (First user-defined key) After a short while, the following is printed:-
DESTROYER ON RADAR

DOWN PERISCOPE
DIVING STATIONS DIVE! DIVE! DIVE!

(Note: before pressing A, a new random number seed between 0 and 199017 (inc) may be entered into register 9)

The calculator has now placed the destroyer randomly within the semi-circle shown above.
2. Commence attack: If it is desired to shoot a torpedo, enter the bearing at which it is to be directed (as above) in degrees (after checking calculator is in degree mode) and press C. If it is desired to fire a ballistic missile, enter the rectangular co-ordinates of the target point, in the following format:- $X X X$. $Y Y Y$ where both $X X X$ and $Y Y Y$ are right adjusted integers, in the range $0-100$ for $Y Y Y$, and $-100-+100$ for XXX and press B. Thus a torpedo shot at 45° travels in a North Easterly direction, but one shot at 135° goes North West.

A Missile directed at a position of 50.025 lands at the point where $X=50$, and $Y=25$ (Bearing East North

MARITIME STRIKE

East;) whereas a missile directed at -50.025 , lands at the point where $X=-50$, and $Y=+25$ (Bearing West North West).

The torpedos are triggered magnetically by sensing a metallic ships hull. Therefore they will score a direct hit on anything within 2 units of their bearing line. Missiles, though, are triggered by the impact as they strike the water's surface. Therefore, they explode anyway (unlike torpedos which, if out of range simply pass by). The force of the explosion scores a direct to anything within 2 units of the impact point, but is sufficient to additionally score a minor hit on anything within 8 units of the impact point. The enemy can sustain four such minor hits and still continue the attack. The fifth minor hit however is fatal and destroys the enemy. The resulting explosion etc, as the intruder sinks, betrays its final position to your submarine's radar, and the enemy position is printed after the statement "Direct Hit!" or "Fatal Minor Hit!".
3. Optional, but not recommended - Cheat button. Pressing E causes the enemy position to be printed.

Scaling The Game

The following Constants and Variables may be altered to suit inidividual ability.

Safety factor (Variable - Register 13)
set to 6 at beginning of game but decreases
236
as game progress. The bigger it is, the
less likely the enemy is to attack you.
Missile minor hit radius (8)
095 \& 096
Missile direct hit radius (2)
Torpedo direct hit radius (2)
Escape factors, the bigger they are, the less
likely you are to be destroyed when
attacked by the method concerned.
Rocket Salvo (8)
Nimrod aircraft (9)
533
Depth charges (7) 461

Fig.1. The radar field grid showing destroyer location and attempted strikes.

Fig．3．The data memeries required．				133	5243117		16		4137003221.		33
5116173637.			00	234	1313717		17		1617333723.		34
3532451735 323101035			01		0324217.		18		15231335.		35
			02	352	3171316		19		2217360073		36
1316133551.			03		0243636．		20		3615323317.		37
1624422431.			04	362	4312636.		21		1527171335．		38
2200363713			05		7311730．		22		2435171537.		39
3724323136			06	450	0421736		23				40
			07	361	7270073.		24		16324331．		41
4632323036.			08	233	2363724.		25		2427170000.		42
			09	271	7003532.		26		1624421773		43
$\begin{aligned} & 23243773 \\ & 3732353 \end{aligned}$			10	152	6173700.		27		0.		44
			11	361	3274232.		28		0		45
1716320000.			12	372	3170043.		29		1．		46
2430353216			13	133	7173573		30		\square.		47
			14	404	0401427		31		3024313235		48
36411430.			15	324	3310032		32		1337132700.		49
Fig．4．The program listing for Maritime Strike						066	44	Sum	100	0	DEG
000	76	LEL	033	36	FGH	067	45	45	101	69	－F
001	16		034	15	15	068	03	3	102	00	00
002	42	STI	035	71	SER	069	22	IHy	103	43	RCL
003	07	07	036	88	DMS	070	28	Lロ号	104	20	20
0104	73	RC	037	92	RTH	071	49	FRI	105	69	－${ }^{\text {F }}$
005	07	07	038	76	LEL	072	45	45	106	02	O2
006	69	－${ }^{\text {P }}$	037	12	E	073	43	REL	107	69	$\square \mathrm{P}$
007	01	01	040	32	X：T	074	46	4 E	108	05	0.5
008	76	LBL	041	43	RCL	075	75	－	109	61	GTD
009			042	20	20	076	43	RCL	110	50	IXI
010	69	DF	043	69	－${ }^{\text {P }}$	077	44	－44	111	76	LEL
011	27	27	0.14	00	00	078	95	0	112	38	SIH
012	73	FC	045	69	－P	079	32	Xit	113	69	－${ }^{\text {F }}$
013	07	$\square \square^{\square 7}$	046	02	02	080	43	RCL	－ 114	00	00
014	69	－	047	43	RCL	081	47	47	115	11	1
015	02	$\frac{02}{12}$	048	42	42	082	75	－	116	10.	6
016	69	DP	049	69	－ $\mathrm{P}^{\text {P }}$	083	43	FCL	117	69	－${ }^{\text {P }}$
017	27	27	050	03	03	084	45	45	118	01	01
018	73	RC：	051	98	AIV	085	50	I <1	119	43	FCL
019	07	07	052	69	－${ }^{\text {P }}$	086	95	$=$	120	39	39
020	69	DF	0.53	05	0.5	087	22	INY	121	69	－F
021	0.3	103	0.54	58	FIX	088	37	F－	－122	02	02
022			055	03	013	089	32	X：T	123	43	RCL
023	27	27	056	32	X！	090	50	I\％I	124	10	10
024	73	$\mathrm{RC}:$	057	99	FRT	091	32	里碞	125	69	$\square \mathrm{P}$
025	07	07	058	22	IHY	092	02	2	126	03	03
026	69	－P	059	58	FIX	093	77	GE	127	69	－${ }^{\circ}$
027	04	\square^{194}	060	42	STO	094	38	SIH	128	05	0.5
028	69		061	45	45	095	08	8	129	15	E
029	95	PTH	062	59	IHT	096	68	HDF	－ 130	76	LEL
030	92	RTH	063	42	STD	097	77	GE	－ 131	30	TAH
081	76	LBL	064	44	44	098	39	COS	） 132	02	2
032	10	E＇	06.5	22	IHY＇	099	76	LEL	133	01	1

134	69	OP^{-}	187	03	03	240	65	\times	293	37	37
135	01	01	188	98	ADV	241	02	2	294	69	－${ }^{\text {F }}$
136	43	RCL	189	69	－${ }^{\text {P }}$	242	00	0	295	04	04
137	49	49	190	05	05	243	01	1	296	69	－F
138	69	－${ }^{\text {P }}$	191	43	RCL	244	95	$=$	297	05	05
139	02	02	192	45	45	245	59	INT	298	98	ADV
140	69	－	193	99	PRT	246	75	－	299	17	E^{\prime}
141	05	05	194	43	RCL	247	01	1	300	98	ADV
142	76	LEL	195	46	46	248	00	0	301	69	पF
143	15	E	196	32	X：T	249	00	0	302	00	00
144	25	CLR	197	43	RCL	250	95	$=$	303	43	RCL
145	35	$1 / 8$	198	47	47	251	42	STI	304	43	43
146	35	1\％	199	22	INV	252	46	46	305	69	－${ }^{\circ}$
147	24	CE	200	37	P／R	253	33	X ${ }^{\text {c }}$	306	03	03
148	44	sum	201	32	X：T	254	75	－	307	69	DP
149	46	46	202	48	EXC	255	04	4	308	05	05
150	43	RCL	203	45	45	256	22	INV	309	69	－${ }^{\text {P }}$
151	47	47	204	75	－	257	28	LロG	310	05	05
152	55	\div	205	32	X：T	258	95	＝	311	69	－${ }^{\text {F }}$
153	03	3	206	95	$=$	259	94	＋／－	312	05	05
154	22	Ity	207	50	I $\times 1$	260	34	「X	313	98	ADV
155	28	Lロ5	208	32	X：T	261	32	X：T	314	25	CLR
156	65	＊	209	43	RCL	262	10	E^{\prime}	315	42	ST0
157	43	FCL	210	45	45	263	65	x	316	40	40
158	46	46	211	32	$X: T$	264	32	X： 1	317	91	R／S
159	69	DF	212	37	F／R	265	85	＋	318	76	LBL
160	10	10	213	50	IXI	266	93		319	79	$\overline{\mathrm{x}}$
161	85	＋	214	42	STI	267	05	5	320	01	1
162	43	FCL	215	44	44	268	95	$=$	321	32	X：T
163	46	46	216	32	X：T	269	59	INT	322	10	E^{\prime}
164	95	$=$	217	29	CF	270	42	STD	323	65	\times
165	58	FIX	218	77	GE	271	47	47	324	43	RCL
166	03	03	219	77	GE	272	98	ADV	325	13	13
167	99	FRT	220	43	RCL	273	25	CLE	326	95	$=$
168	22	INY	221	45	45	274	16	A＇	327	77	GE
169	58	FIX	222	42	STI	275	98	ADV	328	45	Y \times
170	02	2	223	44	44	276	69	－	329	02	2
171	01	1	224	76	LEL	277	00	00	330	05	5
172	16	A^{\prime}	225	77	GE	278	43	RCL	331	93	AIV
173	19	I^{\prime}	226	43	RCL	279	41	41	332	16	A ${ }^{\prime}$
174	76	LEL	227	44	44	280	69	－${ }^{\text {P }}$	333	69	－${ }^{\circ}$
175	13	c	228	32	$X: T$	281	02	02	334	00	00
176	42	STD	229	02	2	282	03	3	335	03	3
177	45	45	230	77	GE	283	03	3	336	05	5
178	43	RCL	231	38	SIH	284	01	1	337	01	1
179	11	11	232	61	GTD	285	07	7	338	03	3
180	69	－${ }^{\text {P }}$	233	60	DEG	286	03	3	339	02	2
181	00	00	234	76	LEL	287	05		340	04	4
182	69	听	235	11	A	288	02	2	341	03	3
183	02	02	236	06	6	289	04	4	342	01	1
184	43	RCL	237	42	STI	290	69	－${ }^{\text {P }}$	343	03	3
185	12	12	238	13	13	291	03	03	344	06	${ }^{6}$
186	69	陦，	239	10	E^{\prime}	292	43	RICL	345	69	日F

346	02	02	400	48	48	453	45	45	507	93	
347	43	RCL	401	69	听	454	32	XiT	508	08	8
	41	41	402	03	03	455	09	9	509	49	PRII
349	69	－	403	43	RCL	456	22	INV	510	13	13
350	03	03	404	10	10	457	77	GE	511	98	ATV
351	69	DF	405	69	DF	458	79	$\overline{\text { x }}$	512	25	ELR
352	05	05	406	04	04	459	10	E	513	92	RTH
353	98	AIV	407	04	4	460	65	－	514	76	LEL
－354	10	E^{\prime}	408	32	X：T	461	07	．	515	23	LEX
355	65	x	409	43	RCL	462	95	$=$	516	03	
356	08	8	410	40	40	463	32	X：T	517	01	，
357	95	$=$	411	67	E日	46.4	69	－F	518	69	－
358	32	X：T	412	30	TAN	465	00	00	519		
359	01	1	413	69	－	466	03	3	$\begin{aligned} & 519 \\ & 520 \end{aligned}$	$\begin{aligned} & 01 \\ & 01 \end{aligned}$	$\begin{aligned} & 01 \\ & 1 \end{aligned}$
360	22	INV	414	05	05	467	03		521	03	
361	77	GE	415	01	1	468	42	STI	522	42	STa
362	35	18	416	44	sum	469	07	07	523	07	5
363	76	LBL	417	40	40	470	98	AIV	524	08	－7\％
364	58	FI\％	418	76	LEL	471	17	$\mathrm{B}^{\text {：}}$	525	17	
365	98	ADV	419	50	IXI	472	98	Any	526	69	\square
366	69	DP	420	43	RCL	473	01	1	527	10	00
367	00	00	421	46	46	474	77	GE	528	17	
368	03	3	422	32	X：T	475	58	FIX	529	01	1
369	00	\square	423	43	RCL	476	76	LBL	530	32	X：T
370	42	STD	424	47	47	477	35	1\％	531	10	
371	07	07	425	22	IA ${ }^{\text {P }}$	478	69		53	65	
372	17	E°	426	37	P／R	479	00	00	563	09	a
373	69	－${ }^{\text {P }}$	427	42	STD	480		1			9
374 375	00	OO RCL	428	07	07	481	03	3	584	95	INW
376	29	29	429	01	1	482	02		566	77	GE
377	69	－${ }^{\text {P }}$	430	07	7	484	02	$\frac{1}{2}$	537	58	FI\％
378	03	03	431	77	GE	485	07	$\frac{7}{7}$	538	69	DF
379	43	RCL			EX	486	00	0	539	00	00
380	30	30	433	32	X，	487	00	0	540	43	RCL
381	69	－P		76	LBL	488	69	－F	541	08	08
382	04	04	435	75	EXC	489	02	02	542	69	
383	76	LEL	437	08	8	490	43	RCL	543	02	02
384	98	ADV	438	95	A	491	38	38	544	03	3
385	69	ロP	439	42	STD	492	69			03	1
386	76	${ }_{\text {LEL }}^{05}$	440	45	4.5	493	03	${ }^{03}$	546	01	1
388	19	$\mathrm{D}^{\text {L }}$	441	32	X：T	494	69		548	03	
389	98	ADV	442	43	RCL	496	76	L8L	549	06	6
390	98	AIV	443	07	07	497	45	Y x	550	03	3
391	98	AIV	444	37	F／R	498	10	E＇	551	07	7
392	98	ADV	445	59	INT	499	65	x	552	69	
393	25	CLR	446	42	STO	500	43	RCL	553	03	0.3
394	91.	R／S	447	47	47	501	13	13	554	98	ADV
395	76	LEL	448	32	Xit	502	95	$=$	555	69	
396	39	cas	449	59	INT	503	32	$8: 1$	556	05	05
397	69	पP	450	42	ST0	504	01	1	557	93	AIV
398	00	00	451	46	46	505	77	GE	558	25	CLR
399	43	RCL	452	43	RCL＇	506	23	LHX	559	91	R／S

MARITIME STRIKE

Fig．5．Sample games of Maritime Strike
showing key strokes．See text for explanation． \bar{A}
＊DESTRDYER DN RAMAR
IIOWH FERISCDFE IIUING STATIDHS

IIVE：
IIVE：
HIVE：
$\overline{\mathrm{C}}$

TORFEII 91.

MISE
HOSTILE ROCKET SALV口 RAIHS IDWH

ALL CLEAR
$\overline{\text { C }}$

TGRFEID 135.

MIS
C
tarpent 45. MISS

DEFTH CHRRGES ？
fll CLEAR
HIMROI SUPMRRINE HIIHTER ロVERHEAI

ZロロMS FAST
\bar{B}

MISSILE
0.012
MISS

IEFTH CHARGES ：
．．．BLDUN DUT DF
THE WATER？

DIUING STATIDHS

\bar{C}

TURPEIU
45
C

TDRFEII 135. M15s

HOSTILE ROCKET SRLVO RAINS IDUN

FLL ELEAR

```TORFEDA 67． 5None```	B $\begin{aligned} & \text { MISSILE } \\ & 20.035 \\ & \text { MINDR HIT? } \end{aligned}$
$\overline{\bar{A}}$	$\bar{B}$
¥ DESTRIYER पH RADAR＊	$\begin{aligned} & \text { MISSILE } \\ & 15.030 \end{aligned}$
DIWN FERISCIPE	MINDR HIT？
	$\bar{B}$
IIVING STATIDAS	MISSILE
	10．025
IIVE？	FATHL MIHDR HIT？
DIVE？	
DIVE？	SIHKS ENEMY VESSEL？




## 1 CLOCK RADIO

How about a round clock radio which can double as a very smart desk clock - as we can testify!
To time, rotate one end of the cylinder to display the frequency selected. Most of the functions are controlled by a push-button panel and the display is a large, clear LCD affair.
Made by Hanimex, the battery clock radio comes in white, white or white. It will lull you to sleep and then turn itself off an hour later and waken you to the sound of Radio 1, or music if you prefer.

To: CLOCK RADIO offer
CT Magazine, 145 Charing Cross Road London, WC2H OEE

Name
Address

## 2 DIGITAL ALARM

This mains-only Hanimex alarm has a large 12-hour display incorporating AM/PM and alarm set indicators. You can have a dim or bright display at the touch of a switch. Fast and slow setting buttons make time setting simplicity itself. You can forget about knocking these accidentally in the morning scramble to turn off the alarm, as a locking switch is fitted under the clock. A 9-minute snooze switch completes the list of all mod. clock cons.

## 3 LCD CHRONO

Our Chrono comes complete with a high grade adjustable metal strap and is fully guaranteed.
The LCD display shows seconds as well as hours and minutes. Press a button and you get the date and day of the week.
Press another button and you have an accurate stopwatch with hundredths of seconds displayed, giving the time up to an hour.
There's a lap time facility, 800 - and of course a back light.

To: DIGITAL ALARM offer
CT Magazine, 145 Charing Cross Road London, WC2H OEE
$£ 10.60$
Name
Address

To: LCD WATCH offer
CT Magazine, 145 Charing Cross Road London, WC2H OEE
£11.95
Name
Address

## 4 LCD ALARM CHRONO

This is no ordinary watch. It's a slim, multi-function, dual time LCD alarm chronograph.
This model will show hours, minutes, seconds, date, day of the week, stopwatch, split time, alarm and alternate dual time zone not all at once of course. There's a night light, too. continuously, while the date will appear at the touch of a button. The alarm is beefy enough to wake you up in the morning and ger you to work on time (or wake you up when it's time to go home).

## We take the first steps towards understanding the workings of the MK14 processor

At this point we take a big step forward, and start to look at the lowest priced commercial microprocessor unit, the Science of Cambridge Mk.14. Quite a lot has been written about this unit previously, and we're not going to repeat any of it here. If you ordered it in time, then you should have a working model ready now; if you didn't order early, then try 'phoning around for one, because several distributors have stocks.

## Small Is Beautiful?

If you've never programmed a microprocessor at this level before, then the Mk. 14 is a good inexpensive introduction to the art, from which you can learn a lot if you are prepared to work at it. The outstanding snags of the early models have now been ironed out, and everything in this series from now on refers to the latest (Issue 5) model. In my opinion you would learn little more about the use of the INS8060 by spending two or three times as much as this unit costs, whatever you might gain in operating convenience. If, of course, you must learn the use of another type of IC, that's different, but the less you spend on machine-code equipment the better - the next big step is to a computer programmed in BASIC; but that's another story.

The snag of the Mk.14, in common with many others, for the beginner, is the manual. There's nothing wrong with the manual as such; it's a useful compendium of information which has obviously been written by someone who is both knowledgeable and enthusiastic. He wasn't, however, engaged in teaching computing to beginners. For this reason, many beginners will find the manual intesely frustrating - the information which they need is there, but, being beginners, they can't find it. The remaining articles in this series are intended as a beginner's guide to the Mk. 14 manual!

## A Guide To Hardware

Let's start by examining the hardware. Assuming that you've stuck with this series so far, you will now have a fair idea of how the INS8060 goes about its work, so you should be able to appreciate how this unit, the Mk.14, differs from the simple breadboard system we've used so far.

The most fundamental and obvious difference is that this is a system which is operated by a monitor program which is stored in two ROM chips, IC2 and IC3. Each of these is a four-bit store, with IC2 storing the lowest four bits $D_{0}$ to $D_{3}$ of the byte, and IC3 storing the highest bits $D_{4}$ to D7. Each IC permits 512 addresses, so that the two ROM's store a total of 512 complete bytes. In Hexadecimal, this is 01 FF , and this is exactly the number of program steps in the monitor program. These ROM ICs are addressed by memory lines $A_{0}$ to $A_{8}$, so that information is read out of the ROMs whenever there is an address on these nine lines and the enable pin (pin 13) of each IC is taken low by IC17. In the older Mk.14's, IC17, a NAND gate was operated by the combination of read OR write signals, and an inverted A11 signal. This meant that each bit in ROM could be fetched by four lots of addresses as the program counter was incremented, because an address whose lower byte was, for example, AA, would be fetched at 01AA, 02AA, 03AA as well as 00 AA . On the Issue 5 board, the gating has been
changed so that the monitor program is stored only at addresses between 0000 and 01 FF . The new gating which is drawn on the back of the circuit appears to omit bars above two of the address lines. As shown in the circuit, it would indicate that the monitor ROM was activated by A11, A10, A9; which would be an address starting with 011 . This would start the monitor at 011000000000 (which is in hexadecimal 0600), and this just doesn't happen. I suspect that the A10 and A9 inputs to the gate have been inverted, so that the ROM is activated by A11, A10, A9, an address starting at 000 and followed by the 9-bit ROM address.


Fig.1. The ROM enable system. In the amended circuit shown in the manual, A9 and A10 (rather than A9 and A10) inputs are shown, but the decoding seems to use the zero rather than the 1 logic states on these lines. Note the small circle at the enable input which indicates that the voltage must go to logic 0 to enable the chip.

Because the board is double-sided, it's difficult to check the circuit by following the lines on the PCB, especially since they disappear under IC holders at frequent intervals. At any rate, the memory map on page 30 of the manual is out of date - the monitor ROM should appear only on the lowest portion of 512 bytes, and the standard RAM which is enabled by A11, A10, A9, A8 all high (addresses starting at OFOO in hexadecimal) is at the top of the memory map.

That doesn't mean that you can write a program starting there, because the monitor stores some data in the locations 0F00 up to OF11 (and some also at OFF9 to OFFF), so that your programs must start at OF12 or higher, and stop before 0FF9. If you have the optional extra RAM, IC6, IC7 then this is activated when A8, A9, A11 are high and A10 low, so that the highest byte of the address is 1011 (Hexadecimal B), and addresses start at OB00. All of these addresses are then available for programs - but if you need them you're no beginner! Note incidentally, that all the addresses we use on the Mk. 14 begin with a zero, thus 0F00, OB00. This is because the INS8060 has only twelve address lines, using three-byte addresses. The upper byte is obtained by strobing the data lines with the NADS signal and latching the outputs obtained from gates. This is not needed on the Mk. 14 .

# MPU's BZ EXPERIMENT 



Fig.2. RAM enabling. The NWDS pulse sets the chip to write when an entry is being made into memory. At the same time, the chip-enable (CE) inputs must both be set low by the signals from address lines A8 to A11, all low. For reading, the NRDS strobe activates the "output enable" pin.

There is decoding present also for the RAM I/O chip which is another optional extra, bringing this IC into action by the address lines A7, A8 and A11. To enable this chip, A8 has to be low and A11 high; with A7 used to select whether the RAM or the.In/Out section of the IC is to be used. We shall not be dealing with this option in this series.

This technique of using memory address signals on the higher memory lines to select RAM or ROM is called address decoding. The same technique is used to operate the display and the keyboard, of which more later.

## Chips Displayed

Looking now at the microprocessor chip, IC1, itself, we can see what use is made of the signals which are available. The first point to note is the power supply inputs which take up the first six strips of the edge connector. If you don't have a suitable connector and you want to get going straight away, you can solder leads to lines 2 and 5, but don't, whatever you do, solder on to the edge-connecting strips themselves. The manual advises the use of a heatsink on the 7805 regulator only when inputs of more than 10 V are used, but it's always an advantage to bend the leads of this IC to an upright position and to bolt some finning to it. These regulator ICs are supposed to be short-circuit proof and to be protected against over-heating, but I've burned out a lot of them through this belief, and the one on my Mk. 14 was no exception. A regulator foldback can cause very odd symptoms - the voltages read OK, the display lights, but the digits go bananas. On mine, I could enter numbers up to 9 , but not higher. This was due to internal nasties happening to the bit of ROM which was being addressed at the time when the regulator went out of action, so the Mk. 14 had to go back to S of C . Much to their credit, they had it back to me within a week, with a full explanation. From then on, I ran my Mk. 14 with a Tandy heatsink on the regulator, and even with that it was pretty hot to the touch, so that greater the area of heatsink you can use without causing the whole thing to collapse with the weight the better.

Coming back to the INS8060, nine lines are taken out directly to the edge connector. These include the D7 and NADs lines, so that the HALT signals can be gated and used if wanted. The normal use of the Mk. 14 does not make use of the HALT signal, because if the microprocessor halts, the display goes out and the keyboard no longer would operate! Unlike our simple unit, the display and entry systems of the Mk. 14 depend on the operation of the microprocessor to keep them going by making use of the monitor program, reading in from the keyboard and out to the display and making use of the address decoding to sort out which is which. We'll look at how this is done in more detail later.

## Connecting Edgewise

The edge connector also has the outputs Sout, F0, F1, F2, which are the serial and flag outputs which we monitored by using LEDs in the simple breadboard unit. The inputs SA, $S_{B}, \operatorname{Sin}$ are also taken to the edge connector. The use of $\operatorname{Sin}$ has already been described, but $S_{A}$ and $S_{B}$ were not. These are inputs which read into the status register directly and which cannot be altered by any program instructions. The SA (sense-A) input will set bit 4 of the status register and cause the INS8060 to interrupt the program which it is carrying out and go to an address set by pointer P3. The sense-B input simply sets bit 5 of the status register, but doesn't cause any address change. You can't therefore run a program if $\mathrm{SA}_{\mathrm{A}}$ is open-circuit or taken to logic 1, which is why the manual advises you to link the $\mathrm{S}_{\mathrm{A}}$ input to earth before attempting to enter a program. The best linking method is to use an edge connector with these two strips connected. If you have no edge connector and prefer to solder a permanent link across, keep the soldering clear of the edge strips.


Fig.3. The RESET switch circuitry. The time constant of C6, R11 prevents the reset voltage from recovering too rapidly.

The reset action is carried out in much the same way as on our simple board. Pressing the RESET switch raises the voltage at the input of the inverter $E$ (a section of 74S04), so that the output goes low, causing a reset. When the RESET button is released, the capacitor C6 ensures that the return is not too fast. The NHOLD input is not used, and is returned to +5 V , along with the CONT input.

Now to the keyboard and the display. These are selected as if they were addresses in memory, using signals from A8, A9 and A11. This whole section is enabled when A8 and A11 are both high, with A9 low, so that the addresses beginning with 1001 or 1101 will activate the display and keyboard. These are bytes 09 and 0D, and it is 0D which is used. In addition to these addresses, the READ and WRITE signals are used in decoding, the READ for activating the keyboard and the WRITE for operating the display. Both READ and WRITE signals are used to gate IC12, which provides "scan" waveform - alternately activating display digits or columns of keys.

## Visualizing Data

Looking at it all in more detail and selecting display first, data on the data lines is connected to the latches IC9, 10, which are enabled by the OD address on the address lines and the WRITE pulse from the 8060 . The data signals are then written out from a memory location in the ROM which holds the correct pattern for a figure or letter. These data bytes are stored in addresses 010B to 011A, so that when a letter or figure is to be displayed, the microprocessor must first fetch from one of these addresses into the accumulator, and then write out into the address of the display, an address which will start with 0D. The lowest digit of this address (0D00,

## (4) The complete Mk14 PCB. Note the on-board keypad to the left - which can be improved by a CT project!

OD01, etc.) selects which one of the eight displays is to be illuminated, so allowing whatever byte is on the data lines to display a letter or digit at that unit. The monitor program will ensure that these addresses are selected in the correct sequence to display both address and data bytes. The selection of the LED unit is done by the decade counter, IC13, using eight of the outputs. In this way, the LED is selected by only the A0 to A2 address lines, but two unused outputs are left available for the bold user who wants to try experimenting with other types of keyboard decoding. The latching and counting which is carried out by IC12, 13 is done whether the display or the keyboard is in use. When data is to be read in from the keyboard, the OD address activates IC11, and the lower address numbers go through a count sequence. This causes the output lines of the decimal deco-
der, IC13 to go low, one at a time, in sequence. When a key is pressed, it will deliver a zero to one of the data lines at a time when one particular address is on the address lines. For example, key 2 will deliver a 0 to pin 14 of IC11 when there is a 0 on the 2-output of IC13 and key 2 is pressed. An address of 0 D 02 , with $\mathrm{D} 7=0$, and D6, D5, D4 $=1$ therefore corresponds to key 2. In my copy of the circuit diagram, the key connections from 8 to F had not been shown, but they follow the same pattern as the keys which are shown. Once again, the monitor program has to compare the data inputs at each address with the stored data to determine what byte must be loaded into the RAM.

Plugging In, Turning On
So much for the hardware and what it does. Let's see now


Fig.4. The complete circuit. The older decoding circuit for ROM is shown, and only the first row of keys.

## MPU's BY EXPERIMENT

what happens when we start to use it. At switch on, the display should read a bank of zeros. My Mk. 14 has nine sevensegment display units, so that the appearance at switch on is of a blank at the left-hand side, followed by four zeros (the address LEDs) two blanks and then two zeros (the data LEDs). This format is used all the way through for the normal display, but as we shall see, it is possible to activate all of the display units and to display letters which are not part of the normal hexadecimal series.

Pressing the RESET button may cause one zero to be brightly lit, or it may extinguish all of the LEDs; either behaviour is quite acceptable. Once the RESET button has been released, it should be possible to key in addresses. This can be done directly, for example, by pressing in sequence, keys $0, F, 1,2$, and will have the effect of setting the address LEDs to the address which is selected, with the data LEDs showing what is stored in the RAM at that address. Don't be surprised at anything you find at 0F12 - this is the start of the RAM memory, and 'garbage' is always found there when you have just switched on. Later in this series, we'll look at a short program for clearing the memory, but for the moment it's important only in one respect. That important provision is that you should let the microprocessor use only that bit of memory which you've programmed. If, for example, your program starts at address OF20, then you can't let the microprocessor run from 0F1F (the address before 0F20, in case you're not used to hexadecimal). If you do start at 0F1F, and there is some garbage stored there, then the garbage at

0F1F will be read as an instruction to the microprocessor. Worse still, your first program instruction may be read as a data-byte rather than as an instruction - remember that many bytes may be taken either as data or instructions. Similarly at the end of a program, you want the microprocessor to stop stepping through memory and return to the monitor program so that the display can operate. We'll emphasise this point again as we go on, because it isn't at all obvious to the beginner. Meantime, follow the very sound S of C advice to start at address 0000 and single-step through the addresses of the monitor, using the Mem key until you are thoroughly familiar with the sequence of hexadecimal numbers. Don't at this point try to understand what the monitor program data bytes are about - life's too short. Next month we start getting on with elementary programs.

Science of Cambridge have informed us that they will sell the MK14 without the CPU for £39.04 including VAT. Those of you who have built the breadboard may like to take advantage of this.


Now, like Intel, Motorola and National you can buy Power-One open frame power supplies and enjoy quality and reliability at LOW LOW prices. Over 70 different models to choose from including floppy disc drive supplies as well as single, double, triple and quad output.


## Floppy Disc Drive Supplies

Shugart drives if required
CP. 249 - drives one min! drive $\mathbf{£ 3 3 . 0 0}$
CP. 249 - drives one min! drive $\mathbf{5 3 3 . 0 0}$ CP. 205 - drives two minidnves one Shugart CP. 205 - drives one Shugart
SA 800 or equivalent $Y^{-1}$ drive ES8.00 CP. 206 - drives two SA890

Discount available to bona-fide educational establishments Quantity discounts start at five units. Trade enquiries welcome
Send large SAE for full catalogue and price list

Single Output

5 V at 2.7 A w/OVP	$\mathbf{5 7 8 . 5 0}$
5 V at 54 A w/OVP	$\mathbf{5 4 1 . 5 0}$
12 V at 6 A	$\mathbf{8 8 7 . 5 0}$
15 V at 5.4 A	$\mathbf{5 8 7 . 5 0}$

## Dual Output

$\pm 12$ to 15 V at 1.5 A	$\mathbf{8 4 1 . 0 0}$
$\pm 18$ to 24 V at 0.4 A	E 2.60
$\pm 5 \mathrm{~V}$ at 5.4 A w $/ \mathrm{OVP}$	$\mathbf{E 7 8 . 0 0}$

Triple Output
5V. 9-15V. -5, -12, -15V at 18 A to 10.8 A From $£ 41.00$ to $E 137.00$


Accessories Available include:-

Edge Connector	KB15P	$£ 1.95^{*}$
Numeric Key Pad	KB710	$£ 7.50^{*}$
Plastic Case (Black)	KB701	$£ 10.75^{*}$
DC to DC Converter	DC512	$£ 5.00^{*}$

* U.K. Orders add 15\% VAT on Order total.

FULL DATA SHEET ON REQUEST
Citadel Products Limited.
Dept. CT. 50 High Street, Edgware, Middlesex HA8 7EP. Telephone 01-951 1848

SOFTY Software Development System


- Direct output to TV programmer
- Reprogrammable to other applications
- Any external memory device can be displayed on screen to copy on to tape or into EPROM
- Access at card edge to all buses
- 22 in/out Ports
- Multi-function keyboard
- Standard card width of 114 mm for 19 inch systems
- High quality double sided, solder masked PCB with component designations (all I.C. sockets included in kits)
- Comprehensive manual covering assembly and use


## SOFTWARE DEVELOPMENT

To develop software hexadecimal data is entered via the keypad into the working RAM. This is displayed on-screen so that the contents of every address are clearly seen. By connecting the address, data and control buses (at the card edge) to the system under development, an external microprocessor may access SOFTY's memory executing the resident program in RAM and/or EPROM halting at set breakpoints if desired. In this way data may be quickly altered until the required program is complete. Any program may be stored on cassette for later use or written directly into EPROM for use by the external system, independent of SOFTY.
SOFTY Prices:
SOFTY Kit-of-parts lincludina zero insertion force socket for EPROM programmer, ribbon cable and 24 pin D.I.L. header plug for connection to the system under development) Price f115 (inc. VAT, p \& p).
SOFTY power supply kit $£ 23$ (inc. VAT, p \& p).
SOFTY built and tested $£ 138$ (inc. VAT, p \& p).
Write or telephone for full details.
MODEL 14 EPROM ERASERS


- Fast erase times (typically 20 minutes for 2708 EPROM)
- 14 EPROM capacity
- Built-in 5 to 50 minute timer to cater for all EPROMs
- Safety interlocked to prevent eye and skin damage
- Convenient slide-tray loading of devices
- 'MAINS' and 'ERASE' indicators
- Rugged construction
- Priced at only E89.70 (inc VAT, p \& p)


## MODEL UV140 EPROM ERASER

Similar to Model UV141 but without timer
Low price at only $£ 70.73$ (inc VAT, p \& p)
WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEQUES/OFFICIAL COM
PANY ORDERS TO

## GP Industrial Electronics Limited

Skardon Works, Skardon Place, North Hill, Plymouth PL4 8HA. Telephone: Plymouth (0752) 28627
TRADE AND EXPORT ENQUIRIES WELCOME

## WE HNVE MOVED - COME AND SEE OUR NEW SHOP

Superboard II
Available now at only.
UK 101 Kit $\mathbf{£ 2 5 1 . 8 5}$
£216.20.
Compukit UK101
£303
Built - includes power supply.

Sorcerer, Pet, Apple II (B \& W) also available.

We would like to wish all our customers a Merry Xmas and Happy New Year.
Please note our new address from 10th December, 1979
0 N.I.C.

SAE Enquiries Please allow up to 21 days
61 Broad Lane, London. N154DJ Day 01-808 0377 Ev. 01-889 9736 for dellivery

## COMPUSTAT

## Continuous Stationery for the Micro Computer

All sizes of listing paper stocked.
Specialists in the preparation of Printed Continuous Stationery - Design Service available Listing paper \& OTC Stocked for the Anadex ( $91 / 2^{\prime \prime}$ ) printer. Phone or write for a quotation to Miss Michael

### 01.5206038

63 ORFORD ROAD, LONDON, E17 9NJ.

development 3K Basic N/A E1965
(Kits avaitable direct from Technalogics only)
Please send for further details (large S.A.E, 13 p stamp please) or order now \{specify rack or tabletop version) from your dealer or in case of difficulty direct from Tecs Sales Dept.

All orders dealt with in strict rotation, carriage and insurance paid. All prices subject to $15 \%$ VAT.
TECHNALOGICS LTT.

8 Egerton Street, Liverpool L8 7LY. Tel. 051-724-2695


We start a new occasional series on connections you can make with your micro. In the first part we show you how to get your Mk14 or Acorn to flash lights on and off, a vital step for micro-mankind.

## MICROLINK

TEXAS UNIVERSITY MODULE


There have been evaluation kits and there have been teaching aids. Now there are teaching aids which can double as an evaluation kit! What Texas have produced, however, is a one board education system (TM990/189) which is also an excellent evaluation and to the TMS 9980 16-bit MPU!

A 300 page course comes with the board along with a hell of a lot else. But is it good value? Can it teach machine code programming as promised? Could it really educate cavement and Spurs supporters? Can it make good tea?

Don't miss next month's stunning inside information when CT reveals all on the TM990/189. The Wews of the Norld will envy us.

It has been the most (and longest) awaited home computing system for a considerable time. Everyone we spoke to had heard of it - and knew a great deal about it - but no-one had actually seen it!!!

Well we can put you out of the state of suspense because CT has been examining a Nascom 2 in great detail and will report all that there is to be reported in our next issue.

Whatever you were expecting we can guarantee you that the Nascom is a surprise!

## NASCOM 2



# A multi purpose power supply suitable for the AIM 65 among others 

The CT PSU was designed primarily with ease of construction in mind, although compatibility and a multi-option format were also major factors in its conception. The whole unit consists of basically four separate supplies, providing a wide range of voltages ie. 5 volts; +12 volts; -12 volts; and 24 volts. Each supply is built around a voltage regulator IC which will give a stabilised DC output with a minimum of other components.

Toroidal transformers are used throughout to reduce size and improve performance - they also provide direct printed circuit mounting which minimises flying leads, which can all too often cause short circuits.

## Options Available

The PSU can be built in one of three ways; 1) a +5 V 5 amp supply and a +24 V 1 amp supply, 2) a +5 V 5 amp supply and a $\pm 12 \mathrm{~V} 1 \mathrm{amp}$ supply, 3) all three depending on what is required. For instance the AIM 65 board (reviewed last month in CT) was powered by the 5 V and the 24 V power supply design (the photograph on pages $20-21$ of the December issue of CT shows the supply in use and proves conclusively that our designs really do work!)

Obviously you will tailor the CT Power Supply Unit to the requirements of your system depending on voltages and currents needed.

## Construction

As in any mains to DC power supply, care must be taken in construction of the project, although the layout of the PCBs does somewhat simplify construction. We suggest that you mount your boards one above another, like ours, although they can be mounted side by side if necessary. We used three lengths of 4 BA threaded brass rod and spacers to hold together the two boards in our supply ( +5 V and +24 V ). Slightly longer rod will be needed if all three boards are to be built and constructed in this manner. The brass rod closest to the outputs of the boards grounds the 0 volt lines of the separate supplies together. If the boards are situated in a different manner to that which we recommend then these points should be joined with heavy gauge wire.

Procedures for the three optional constructions will now follow. Option $1,+5 \mathrm{~V}$ and +24 V . The 24 volt board goes above the 5 volt board. It will be necessary to make a cut-out in the top board to allow for the large heatsink, mounted on the bottom board. The top half of this heatsink allows adequate space for mounting IC2 whilst it is still soldered into its relevant position in the 24 volt board. The heatsink is mounted to the lower board with brackets and nylon nuts and bolts to provide electrical isolation. The regulators should be fastened to the heatsink using the usual mica washers and a suitable heatsink compound providing electrical insulation and good thermal conductivity.

The 24 volt board has provision for mains on/off switch SW1, a neon indicator showing mains on, and mains fuses FS1 and FS3. These fuses are for mains voltages so it is advisable to use holders of the fully shrouded type.

Mains connections between the boards ie. Live, neutral and earth are made via 3 short leads to the relevant positions under the 24 V board and above the 5 V board (try very hard not to get these mixed up!)


Option $2,+5 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$. The procedure here is similar to that of the last except for the fact that the large heatsink is not used for mounting the upper board ( $\pm 12 \mathrm{~V}$ ) voltage regulators. It will have to be cut short as there is no space therefore for it on the upper board. Instead mount IC3 and IC4 on smaller heatsinks, as shown in the overlays.

SW2 acts as the mains on/off switch in this option and FS1@ acts as the mains fuse for the +5 V board.

Option $3,+5 \mathrm{~V},+24 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$. This option is really only a combination of the last two options. Put the 24 V board above the 5 V board (after making the cut-out) and mount the $\pm 12 \mathrm{~V}$ board above this. Take the mains input to the 24 V supply as normal, then connect mains from this board to the 5 V board and also the $\pm 12 \mathrm{~V}$ board. It should be apparent that FS1@ on the $\pm 12 \mathrm{~V}$ board is not now needed and can be omitted in this option.

Finally, if you are not going to case this project then it is advisable to lacquer the copper surface of the bottom board, and as much of the top boards as possible after completion (in particular the mains $1 / \mathrm{P}$ sides). Further precautions should be taken when the supply is to be used, making sure that the supply is not on a conducting surface. .

## HOW IT WORKS

The 5 V supply will quite happily provide well over 4 amps at 5 volts, this is achieved by using IC1, a 5 volt 5 amp voltage regulator IC, which stabilises the rough DC voltage across the computer grade smoothing capacitor C1. Because of the high power involved ICl needs to be mounted on a substantial heatsink. Output fuse FS2 protects the supply against short circuit and should be a quick blow type ( 2.5 amp when used with AIM 65). LED 1 indicates operation of this supply.

The 24 volt supply is identical in operation but uses IC2 - a 24 volt voltage regulator which will provide 1 amp . The AIM 65 takes an average current of 0.5 amp at 24 volt but peaks at over 2 amps. Fuse FS4, a slow blow 1 amp fuse allows these peaks to occur with no detriment to the running of computer or power supply. LED 2 indicates operation of this supply.

The $\pm 12 \mathrm{~V}$ supply uses two voltage regulators, $\mathrm{a}+12 \mathrm{~V}$ type and $\mathrm{a}-12 \mathrm{~V}$ type, both rated at 1 amp which operate in identical fashion to those above. LED 3 indicates operation. Output fuses FS6 and FS7 are of course dependent on the use to which the supply will be put (as are the output fuses of the other two supplies).

## POWER SUPPLY PROJECT


$\mathrm{O}_{\mathrm{O}}^{\mathrm{O}}$
Fig.1. The circuit diagram of the 5 V power supply.


Fig.2. The 24 V power supply circuit.



## PARTS

## RESISTORS

All $1 / 4 \mathrm{~W}, 5 \%$ unless otherwise stated.

R1,3
4k7
R2 150 R
R4,5 $1 \mathrm{k0} 1 \mathrm{Watt}$

## CAPACITORS

C1	15000 uF 16 volt, Computer Grade.
C2	1 uF Tant 25 V (or PCB mounted Electrolytic
C3,6	100 nF Polyester
C4	4700 uF 40 V Electrolytic
C5	470 nF Polyester
C7,8	1000 uF 25 V Electrolytic
C9,10,11.	220 nF Polyester



Please note that as the Eurocard foils are too large to go on our page they are reproduced half size. Full size pat-

Fig.4. The three foil patterns, $+5,+24$ and $\pm 12$ volts top to bottom.

## LIST

SEMICONDUCTORS	
IC1	$78 \mathrm{H05}$
IC2	7824
IC3	7812
IC4	7912
BR1	200V 6 amp Bridge      RR2,3
Rectifier.   200V 1 amp Bridge	
LED1,2,3	Rectifier.
TIL 209 or similar LED	

## MISCELLANEOUS

T1 $\quad 6-0-6$ volt 50VA Toroidal Transformer.
T2,3 12-0-12 20VA Toroidal
Transformer.
SW1,2 DPDT PCB mounting switch
2 x indicator neons
$4 \times$ shrouded PC mounting fuseholders + fuses ( 2 amp ).
$3 \times$ open PC mounting fuseholders + fuses.


Fig.5. The corresponding overlays for the foil patterns.



#### Abstract

What Is A Microprocessor ? 2 Cassette tapes plus a 72 page book deal with many aspects of microprocessors including Binary and Hexadecimal counting, Programming etc. £12.00


#### Abstract

Adams, C. BEGINNERS GUIDE TO COMPUTERS AND MICROPROCESSORS WITH PROJECTS Understanding building programming and operating your own microcomputer


Ahl, BASIC COMPUTER GAMES £5.25
Albrecht, B. BASIC FOR HOME COMPUTERS. A self teaching guide
£5.30
Shows you how to read, write and understand basic programming language used in the new personal size microcomputers
Albrecht B. BASIC. A self teaching guide (2nd edition)
£5.30
Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special maths or science background.
Alcock, D. ILLUSTRATING BASIC £2.60 This book presents a popular and widely available language called BASIC, and explains how to write simple programs
Altman, I. MICROPROCESSORS £10.65 Gives a general overview of the technology design ideas and explains practical applications.
Altman, L. APPLYING MICROPROCES-
SORS
$£ 12.00$
Follow volume which takes you into the second and third generation devices.
Aspinall, D. INTRO TO MICROPROCESSORS
£6.40
Explains the characteristics of the component
Barden, W. Z-80 MICROCOMPUTER
HANDBOOK £7.65

Barden, W. HOW TO BUY AND USE MINICOMPUTERS AND MICROCOMPUTERS £7.75
Discusses these smaller computers and shows how they can be used in a variety of practical and recreational tasks in the home or business.
Barden, W. HOW TO PROGRAM MICROCOMPUTERS
£7.00
This book explains assembly language programming of microcomputers based on the Intel 8080, Motorola MC6800 and MOS Technology MCS6502 microprocessor.

## Barna, A. INTRODUCTION TO MICROCOMPUTERS AND MICROPROCESSORS

£8.15
Provides the basic knowledge required to understand microprocessor systems. Presents a fundamental discussion of many topics in both hardware and software
Bibbero, R. J. MICROPROCESSORS IN INSTRUMENTS AND CONTROL £12.45 Introduces the background elements, paying particular regard to the dynamics and computational instrumentation required to accomplish real-time data processing tasks.
Lancaster, D. TV TYPEWRITER COOKBOOK
£7.75
An in-depth coverage of tv typewriters (tv's) the only truly low cost microcomputer and small display interface.
Lancaster, D. CHEAP VIDEO COOKBOOK £6.50 Lesea, A. MICROPROCESSOR INTERFACING TECHNIQUES
£8.50
Leventhal. INTRO TO MICROPROCES-
SORS
£16.70
Lewis, T. G. MIND APPLIANCE HOME COMPUTER APPLICATIONS £4.75 Libes, S. SMALL COMPUTER SYSTEMS HANDBOOK
£5.75
The Primer written for those new to the field of personal home computers.

## Lippiatt. ARCHITECTURE OF SMALL COMPUTER SYSTEMS $£ 4.35$

 Moody, R. FIRST BOOK OF MICROCOMPUTERS£3.85
(the home computer owners best friend)
McGlynn, D. R. MICROPROCESSORS Technology, Architecture \& Applications
$£ 9.00$
This introduction to the 'computer-on-a-chip' provides a clear explanation of the important new device

## McMurran, PROGRAMMING MICROPROCESSORS <br> $£ 5.50$ <br> A practical programming guide that includes architecture, arithmetic/logic operations, fixed and floating point computations, data exchange with peripheral devices computers and other programming aids.

## Monro, INTERACTIVE COMPUTING WITH BASIC <br> £3.65 <br> Nagin, P. BASIC WITH STYLE <br> £4.00

Programming Proverbs. Principles of good programming with numerous examples to improve programming style and producing.
Ogdin SOFTWARE DESIGN FOR MICRO-
COMPUTERS
Ogdin. MICROCOMPUTER DESIGN $£ 7.05$
Peatman, MICROCOMPUTER BASE DESIGN
£5.45

## Peatman, J. B. MICROCOMPUTER BASED DESIGN <br> £20.40

This book is intended for undergraduate courses on microprocessors.
Peckham, HANDS ON BASIC WITH A PET ..... 88.70Peckham, BASIC - A HANDS ON MET-HOD
£6.85
Bursky, D. MICROCOMPUTER BOARD DATA MANUAL £5.40 Bursky, D. MICROPROCESSOR DATA

Includes complete description of the processor. Support circuits, Architecture, Software, etc.
Coan, J. S. BASIC BASIC
£7.50
An introduction to computer programming in BASIC language
Coan, J. S. ADVANCED BASIC £7.30 Applications and problems.
Ditlea, A SIMPLE GUIDE TO HOME COM-
PUTERS
Freiberger, S. CONSUMERS GUIDE TO PERSONAL COMPUTING AND MICROCOMPUTERS $£ 5.50$
Frenzel, L. GETTING ACQUAINTED WITH MICROPROCESSORS £7.10
This is an invaluable book for those who want to know more about hobby and personal computing.
Gilmore, C. M. BEGINNERS GUIDE TO MICROPROCESSORS £4.75
Grossworth, BEGINNERS GUIDE TO HOME COMPUTERS
£ 3.10
Gosling, R. E. BEGINNING BASIC $£ 3.25$ Introduces BASIC to first time users.
Graham, N. MICROPROCESSOR PROGRAMMING FOR COMPUTER HOBBYISTS $£ 7.00$ Haviland, N. P. THE COMPULATOR BOOK
£6.20
Building super calculators and minicomputer hardware with calculator chips.
Hartley, INTRODUCTION TO BASIC $£ 2.40$ Heiserman, D. L. MINIPROCESSORS FROM CALCULATORS TO COMPUTERS £4.85 Hilburn, J. L. MICROCOMPUTERS, MICROPROCESSORS, HARDWARE, SOFTWARE AND APPLICATIONS £16.95 Complete and practical introduction to the design, programming operation, uses and maintenance of modern microprocessors, their integrated circuits and other components.
Klingman, E. MICROPROCESSOR SYSTEMS DESIGN £16.95
Outstanding for its information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new third generation devices. No prior knowledge of microprocessors or microelectronics is required for the reader.

## Kemeny, J. G. BASIC PROGRAMMING

Korn, G. A. MICROPROCESSOR AND SMALL DIGITAL COMPUTER SYSTEMS FOR ENGINERS AND SCIENTISTS £21.00 This book covers the types, languages, design software and applications of microprocessors.

Duncan. MICROPROCESSOR SOFTWARE
ENGINEERING
£13.50

Rao, G. U. MICROPROCESSOR AND MICROPROCESSOR SYSTEMS £20.50 A completely up-to-date report on the state-of-the-art of microprocessors and microcomputers written by one of the leading experts.
Rony, P. H. THE 8080A BUGBOOK: Microcomputer Interfacing \& Programming £8.15 The principles, concepts and applications of an 8 -bit microcomputer based on the 8080 microprocessor IU chip. The emphasis is on a computer as a controller.
Scelbi. 6800 SOFTWARE GOURMET GUIDE AND COOKBOOK $£ 8.80$ Scelbi. 8080 SOFTWARE GOURMET GUIDE AND COOKBOOK $£ 8,80$ Scelbi. UNDERSTANDING MICROCOMPUTERS
£8.60
Gives the fundamental concepts of virtually all microcomputers.
Spencer, GAME PLAYING WITH BASIC ..... $£ 4.70$
Schoman, K. THE BASIC WORK- BOOK ..... £3.70
Sirion, D. BASIC FROM THE GROUND UP ..... £6.00
Soucek, B. MICROPROCESSORS ..... AND
MICROCOMPUTERS £19.00
Here is a description of the applications programming and interfacing techniques common to all micropro-cessors
Spracklen, D. SARGON ..... £9.75
A computer chess program in Z-80 assembly language.
Titus, MICROCOMPUTER ANALOGUE CONVERTER ..... $£ 7.45$
Titus, 8080/8085 SOFTWARE DESIGN ..... £7.45
Tracton. 57 PRACTICAL PROGRAMS \&
GAMES IN BASIC ..... £6.40
Programs
Blackiack.
Waite. M. MICROCOMPUTER PRIMER
£6.25
Waite, YOUR OWN COMPUTER ..... $£ 1.50$
Introduces the beginner to the basic principles of themicrocomputer.
Ward. MICROPROCESSOR / MICRO-
PROGRAMMING HANDBOOK ..... f6.00
Authoritative practical guide to microstruction programming and applications
Veronis. MICROPROCESSOR ..... £12.85
Zaks, R. INTRODUCTION TO PERSONAL
AND BUSINESS COMPUTING ..... £8.50
Zaks, R. MICROPROCESSORS ..... FROMCHIPS TO SYSTEMS£7.50
Note that all prices include postage and packing. Please make cheques, etc, payable to Computing Today Book Service (Payment in U.K. currency only please) and send

Computing Today Book Service,

P.O. Box 79, Maidenhead, Berks

## Can you break the bank before you lose your stake? Can you bluff the dealer? Well, find the answers in this game

For those of you who cannot afford to attend such salubrious gambling establishments as Monte Carlo this Pontoon program will provide a suitable companion. The game is written in a conversational mode so it will be easy to convert to suit your own system. For those of you who are not familiar with the ASCII code set lines 10 and 20 may be replaced with a suitable screen clearing routine.

```
0010 PRINT CHR$(26)
0020 PRINT CHR$(7)
0030 PRINT
0040 PRINT "THIS IS A PONTOON
 PLAYING PROGRAM"
0045 C5=100
0046 P5=100
0047 X5=0
0050 PRINT
0 0 6 0 ~ P R I N T ~ " W E ~ E A C H ~ H A V E ~ £ 1 O 0 ~ T O ~
 PLAY WITH. THE ANTE IS £3"
0 0 7 0 ~ P R I N T
0080 PRINT "WHEN I HAVE DEALT THE
CARDS AND TOLD YOU WHAT
YOU HAVE."
0090 PRINT "YOU MUST EITHER
 STICK TGIST OR BUY."
OIOO PRINT "YOU CAN BUY CARDS
 FOR UP TO £lO, NO MORE"
```


## OllO PRINT

```
0112 PRINT "YOU MAY BURN YOUR HAND AT ANY TIME BY TYPING C ."
0113 PRINT "PROVIDED, OF COURSE , YOUR HAND-VALUE IS 13"
0115 PRINT
0120 PRINT "TO SPECIFY WHAT YOU
```

The program contains a number of interesting routines which handle the dealing and sorting of the cards and the computer will assess the value of its own hand. A number of options are available such as sticking, twisting and buying with your hand as well as burning if your hand value total is thirteen.

To make the program as universal as possible no graphics are used so there is plenty of scope here for improvement and modification.

> WANT TO DO, TYPE 'S','T'
> ,$^{\prime} \mathrm{B}^{\prime}$, OR 'C' '

0125 C5 = C $5-3$
0126 P5 $=P 5-3$
$0127 \times 5=\times 5+6$
$0130 \mathrm{Pl}=0$
0140 P2 $=0$
0200 FOR I=1 TO 10
$0210 \mathrm{~A}(\mathrm{I})=\operatorname{INT}(53 * \operatorname{RND}(0))$
0215 IF $A(I)=0$ THEN 210
0216 IF I<2 THEN 250
0220 FOR J=1 TO I-1
0230 IF $A(J)=A(I)$ THEN 210
0240 NEXT J
0250 NEXT I
0260 FOR I=1 TO 10
$0270 \mathrm{~K}=\mathrm{A}(\mathrm{I})$
0280 GOSUB 2000
0290 REM GO AND FIND OUT WHAT CARD IT IS AND HOW MANY IT COUNTS

0300 NEXT I
0400 A=2
$0410 \quad B=1$
0420 GOSUB 2400
$0440 \mathrm{Nl}=\mathrm{N}$

## pONTOON

0442 IF $A=5$ THEN IF Nl<22 THEN 2600 0450 GOSUB 2500

0455 IF G\$="S" THEN 470
0456 IF $\mathrm{G} \$=$ "C" THEN IF $\mathrm{N}=13$
THEN 200
0460 GOSUB 2400
0462 IF $\mathrm{N}>21$ THEN 800
0465 GOTO 440
0470 IF Nl<l6 THEN 450
0471 PRINT
$0475 \mathrm{C}=\mathrm{A}$
0480 PRINT "RIGHT THEN...
HERE I GO,..."
0490 B=6
$0500 \mathrm{~A}=2$
0510 GOSUB 2400
0515 GOSUB 2050
$0520 \mathrm{~N} 2=\mathrm{N}$
0530 IF $N<22$ THEN IF $A=5$ THEN 2650
0531 IF $\mathrm{N}<16$ THEN 600
0532 IF N2>18 THEN 540
0533 IF (19-N2)/10<RND (0)/3
THEN 540
0534 GOTO 600
0535 PRINT
0540 PRINT "I'M STICKING WITH WHAT I'VE GOT"

0545 PRINT
0550 IF $\mathrm{Nl}=21$ THEN IF $\mathrm{C}=2$ THEN 1000
0551 IF N2 21 THEN IF $A=2$ THEN 1060
0552 IF $\mathrm{P} 1 * \mathrm{P} 2>.5$ THEN 560
0553 IF N1=N2 THEN IF P2=1 THEN 560
0554 IF Pl=1 THEN 900
0555 IF N1>N2 THEN 900
0560 PRINT
I WIN
0570 PRINT
0580 GOTO 960

0600 PRINT "I'LL TWIST"
0601 GOSUB 2050
$0610 \mathrm{~A}=\mathrm{A}+1$
0620 GOSUB 2400
0625 N2 $=\mathrm{N}$
0630 IF N>21 THEN 700
0640 GOTO 520
0700 PRINT "I'VE BUSTED
...... DAMMIT!"
0720 PRINT
0730 GOTO 900
0800 PRINT "YOU'VE BUSTED"
0810 PRINT
0820 GOTO 560
0900 PRINT "***********
YOU WIN ***********"
0910 PRINT
0920 P5 = P $5+\times 5$
0925 PRINT " YOU NOW HAVE £"; P5
0926 PRINT " I NOW HAVE £"; C5
0927 PRINT
0930 PRINT
$0935 \times 5=0$
0940 GOTO 120
0960 C5 = C $5+\times 5$
0970 GOTO 925
1000 PRINT
1010 PRINT "YOU HAVE A PONTOON:!"
1020 PRINT
1030 GOSUB 2050
$1040 \mathrm{Pl}=1$
1050 GOTO 551
1060 PRINT "I HAVE A PONTOON!!"
1070 PRINT
1080 P2=1
1090 GOTO 552
2000 L=0

```
2005 IF K<14 THEN 2100
2 0 1 0 ~ K = K - 1 3
2020 L=L+1
2030 GOTO 2005
2050 F=0
2060 F=F+1
2070 IF F<30 THEN 2060
2080 RETURN
2100 B(I) =K
2110 IF K=1 THEN A$(I)="ACE"
2120 IF K=1 THEN IF I<3
 THEN B(I)=11
2121 IF K=1 THEN IF I>2
 THEN B(I)=1
2122 IF K=1 THEN IF I>5
 THEN B(I)=11
2123 IF K=1 THEN IF I>7
 THEN B(I)=1
2130 IF K=2 THEN AS(I)="TWO"
2140 IF K=3 THEN A$(I)="THREE"
2150 IF K=4 THEN AS (I) = "FOUR"
2160 IF K=5 THEN A$(I)="FIVE"
2170 IF K=6 THEN A$(I)="SIX"
2180 IF K=7 THEN A$(I)="SEVEN"
2190 IF K=8 THEN A$(I)="EIGHT"
2200 IF K=9 THEN A$(I)="NINE"
2210 IF K=10 THEN A$(I)="TEN"
2220 IF K=11 THEN A$(I)="JACK"
2230 IF K=12 THEN A$(I)="QUEEN"
2240 IF K=13 THEN A$(I)="KING"
2250 IF K>10 THEN B(I)=10
2260 IF L=0 THEN B$(I)="HEARTS"
2270 IF L=1 THEN B$(I)="CLUBS"
2280 IF L=2 THEN B$(I)="DIAMONDS"
2290 IF L=3 THEN B$(I)="SPADES"
2300 RETURN
2400 N=0
```

2402 PRINT
2410 IF $B=1$ PRINT "YOU HAVE"
2420 IF $\mathrm{B}=6$ PRINT "I HAVE"
2430 PRINT
2440 FOR $S=B$ TO ( $B+A-1$ )
2450 PRINT "**** ";A\$(S);
" OF "; B\$(S)
$2460 \mathrm{~N}=\mathrm{N}+\mathrm{B}(\mathrm{S})$
2470 PRINT
2480 NEXT S
2485 IF $N=22$ THEN IF $A=2$ THEN 2700
2490 PRINT "HAND VALUE ";N
2492 PRINT
2495 RETURN
2500 INPUT "WHAT DO YOU WANT TO DO",G\$
2502 IF G\$="C" THEN 2580
2510 IF G\$="S" THEN 2570
2520 IF G\$="T" THEN 2560
2530 IF G $\$=" B "$ THEN 2550
2540 GOTO 2500
2550 PRINT
2551 INPUT "HOW MUCH FOR ",Q
2552 IF Q>10 THEN 2551
2553 P5 $=\mathrm{P} 5-\mathrm{Q}$
2554 C5 $=C 5-Q$
$2555 \times 5=X 5+2 * Q$
2556 PRINT "O.K.
I'LL MATCH THAT !"
2557 PRINT
$2560 \mathrm{~A}=\mathrm{A}+1$
2570 RETURN
2580 IF $N=13$ THEN 2570
2590 GOTO 2500
2600 PRINT
2610 PRINT "YOU HAVE A
FIVE CARD TRICK"

## pONTOON

2620	PRINT	2670 PRINT
2630 GOTO 900	2680 GOTO 560	
2650	PRINT	$2700 \quad B(B)=1$
2660	PRINT "I HAVE A	2710
	N $=12$	
	FIVE CARD TRICK !!"	2720 GOTO 2490



## BUY

noscom-2
NOW AND GETA FREE 16K RAM BOARD


## £295 w

The lack of availability by the Mk 4118 RAMS has seriously delayed the launch of the Nascom 2, so we have decided to relaunch the product with an offer few will be able to refuse. The Nascom 2 will be supplied without the optional user 4118 s . Instead, we will supply a 16 K dynamic RAM board and the interconnect for the NASBUS - absolutely FREE. This board allows further expansion to 32 K . Also, when the 4118 s become available, customers taking advantage of this offer can have the 8 K for just f 80 (plus VAT).
Meanwhile, the empty sockets on the Nascom 2 can be filled with 2708 EPROMs allowing dedicated usage, now with 16 . or 32 K of extra RAM. All the other features of the Nascom 2 are available and these include:

## MICROPROCESSOR

Z80A 8 bit CPU which run at 4 MHz but is selectable between $2 / 4 \mathrm{MHz}$.

## HARDWARE

$12^{\prime \prime} \times 8^{\prime \prime}$ PCB through hole plated, masked and screen printed. All bus lines are fully buffered on-board. PSU: $+12 \mathrm{v},+5 \mathrm{v}$, $-12 \mathrm{v},-5 \mathrm{v}$

## MEMORY

-2K Monitor-NAS SYS 1 (2K ROM) 1 K Workspace/User RAM - 1 K Video RAM
-8K Microsoft BASIC (Mk 36000 ROM)

## INTERFACES

New 57 -key Licon solid state keyboard.
Monitor/domestic TV.
On-board UART provides serial handling for Kansas City cassette interface (300/1200 baud) or the RS232/20mA teletype interface.
Totally uncommitted P10 giving 16 programmable I/O lines.
The Nascom 2 makes extensive use of ROMs for on-board decoding. This reduces the chip count and allows easy changes for specialised industrial use of the board. On-board link options allow reset control to be reassigned to an address other than zero.
The 1 K video RAM drives a 2 K ROM character generator providing the standard ASC II characters with additions - 128 characters in all. There is also a socket for an optional graphics ROM on-board.

## STRATHAND

## 44 Andrew's Square, Glasgow. G1 5PL Tel: 041-552 6731 or 2 Telex: 777268 (24 hours service)

Microcomputers are coming - ride the wave! Learn to program. Milions of iobs are threatened but millions more will be created. Learn BASIC- the
 language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ig. norance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation.
Book 1 Compulers and what they do well: READ. DATA, PRINT, powers, brackets variable names; LET: errors: coding simple programs.
Boak 2 High and low level languages: flowcharting: functions; REM and documentation: INPUT. IF....THEN. GO TO; lumtations of compulers, problemn definition.
Book 3 Compilets and interpreters; loops, FOR....NEXT, RESTORE: debugging; arraws bubble sorting: TAB
Book 4 Advanced BASIC; subroutines: stting vafrables; files; complex programming

## examples; glossary. <br> Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and computers.


Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; tepresentation of negative numbers; complementary systems.
Book 2 OR and AND functions; logic gates; NOT, exclusive-QR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws: canonical forms; logic conventions; karnaugh mapping: three state and wired logic Gook 3 Half adders and full adders; subtractors; senal and parallel adders; processors and ALU's; multiplication and division systems
Book 4 Flip Hlops; shift tegisters; asynchronous and synchronous counters; ring. Johnson and exclusive - OR leedback counters; ROMS and RAMS
Book 5 Structure of calculators; keyboard encoding: decoding display data; register systems; control unit; program ROM; address decoding.
Book 6 CPU; memory organisation; character representation; program storage: address modes; input/output systems; program interrupts; interrupt prioniles; programming. assemblers; computers; execulive programs; operaling syslems.

## GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded, without question, on return of the books in good condition.

[^1]

## FROM CASIO - THE NEXT STEP FORWARD IN TIME

New Lithium battery lasting up to 5 years, totally eclipses most Solar watches

## THE NEW 83QS - 27B ALARM CHRONOGRAPH

Optional display of hours, minutes, seconds, date, am/pm: or alternatively Hours, minutes, alpha day, date. am/om. The automatic calendar is set for 28 days in February. Casio's new Lithium battery lasts up to 4 YEARS or more The chronograph times in $1 / 10$ second units up to 12 hours, measuring net. lap and first and second place times. An indicator shows the chronograph is runn ing when normal time is displayed. The 24 hour alarm can be set very easily to 1 minute intervals with an indicator to show the alarm is set.
In addition the watch can be set to chime every hour. on the hour. with a separate indicator to show this function is on
A micro light illuminates the display at night time
This superb watch is stainiess steel encased, has a mineral glass face and is guaranteed water resistant to 66 feet [2 atmospheres)

$$
\text { Raficis } \mathfrak{x l 2 7 . 9 9}
$$

81CS-36B

## LCD PROGRAMMABLES

With non-volatile stores and memories and almost infinite programmability (using FA-1)
1500 hours continuous use battery life.
51 scientific functions. $1 / 6 \times 2 \frac{1}{4} \times 51 / 2$ inches.
FX-501P
11 memories.
128 functional steps; 5 levels (); 9 subroutines, -4 levels. (£64.95)
£54.95
FX-502P
22 memories
256 functiona! steps. 10 levels 11
9 subroutines - 9 levels.
(£84.95)
£74.95
FA-1
Adaptor
£19.95


Optional FA- 1 permits programme/data storage on standard cassette tape recorder for re-entry later

## Casio Sclemifics with non-voletile memon

 FX- $310(8$ digits) 50 sci functions FX- 510 ( 10 digits) 50 sci functionsFX- 2600 (8) 43 sci functions. Uitra slim
FX-3200 (10) 43 sci function. Ultra slim
Others: FX-80 C15. 36
Clock Calculators MQ-11
E26.96
AO-2000 £24.95. CQ-82 £14.95. HQ-21 £10.95
GET THE MIDAS TOUCH BEFORE YOUR FRIENDS DO SUPERSWITCH Midas Touch Dimmer The softest touch on the brushed aluminium panel of this beautifully styled control is all that is required to switch lights on and off and to vary lighting brilliance
Touch Midas with the fingertips and the light is on. Touch again and it's off. Allow the finger to rest on the panel and the light intensity changes smoothly through a cycle from bright to dim and back again. Removing the touch during the cycle sets the lighting at the level required. Once set, this brightness level will be maintained during normal on/off operations.
Meets latest BS for RF interference.

Price includes VAT, PGP. Sand cheque.
P.O. or 'phone your ACCESS or $B^{\circ} C A R D$ number to:

WE ARE NEVER KNOWINGLY UNDERSOLD AND WILL TRY AND MATCH OR BEAT ANY OTHER ADVERTISED PRICE PROVIDING THE ADVERTISER HAS STOCKS OF THIS ITEM


24 hour alarm Selectabie hourty chime facility Backlight
Mineral glass face.
81CS - 36B
As above but
Stainless steel case
W.R. to 100 feet
${ }_{(\text {(239.95) }} \mathbf{£} \mathbf{3 5 . 9 5}$

## CASIO CHRONOGRAPHS

As 810S/CS above but with 12 or 24 hour dual time lacility instead of alarm and chimes functions.
9505. 328 Chrome plated ( $£ 27.95$ ) $950 \mathrm{~S}-318$ Stainless iacket ( $£ 27.95$ ) 23.95 55Cs-318 Stainless steel (f34 23.95

## CASIO ALARM WATCH

4 digit ultra slim watch with four vear calendar and 24 hour alarm
59 CS -33B Stainless steel (£49.95)
E44.95
CASIO SPORTS WATCH
Time, calendar and $1 / 100$ second chrono to 1 hour F-200 Resin case and strap (£17.95) $\quad \mathbf{£ 1 5 . 9 5}$

## CASIO TIME/DATE

8 digit display of time, date and day F-8C Resin case and strap (f 12 95)
£10.95
Most CASIO products available from stock. Send $25 p$ for illustrated brochures.

# To go with our MPU series we have a replacement keyboard for the MK14 

Although it is generally agreed that the Mk-14 is exceptionally good value for money, most reviewers have singled out the keyboard as the main feature for criticism. Fortunately, Science of Cambridge have already provided at the front end of the board an edge-plug to which an external keyboard can easily be connected.

## Buy Or Build

Hexadecimal keyboards or keypads can be purchased readymade but it is cheaper to make your own. Furthermore, the home-made version is specially designed to be mounted directly above the integral keyboard of the Mk-14 with the display in its natural place beyond the edge of the keyboard and the 'Reset' button to the right (Fig.1). The keyboard and Mk-14 board are mounted on a rectangle of plasticsurfaced chip-board on which there is room to mount the power-pack, the tape interface board or any other devices that are permanently or occasionally attached to the microprocessor system. It is wise to make the mounting board a little larger than you think it need be, to accommodate any additional devices that might be added to the system in the future.


Fig.1. The layout of the system with the new keyboard.

The 16 -way edge-plug is shown in Fig.2. Pads 1 to 4 are connected to the input terminals of a tri-state buffer (IC11). The outputs of this buffer are connected to four lines of the address bus. The potential of each input terminal is normally held high ( +5 V ) because each is connected to the +5 V rail through a resistor (R7-R10). Pads 5 to 14 are connected to the outputs of a BCD-to-decimal decoder. Each output is normally high, but each in turn carries a brief low pulse ( 0 V ) in regular sequence under the control of the microprocessor clock. When a key is pressed, one of the decoder outputs is connected to one of the buffer inputs. The list to the left of Fig. 2 shows which keys make which connections. A low pulse from one of the decoder outputs is thus routed to one of the buffer inputs and a pulse appears on one of the lines of the address bus. The microprocessor
receives this pulse and, by noting which line it arrives on and the exact timing of its arrival, can tell which key has been pressed. The function of the keyboard is simply to make the correct decoder-buffer connections.


Fig. 2. Connections to the Mk-14 edge connector.


The keyboard PCB foil layout. Don't let the solder get bridged!

## Keyboard Layout

The arrangement shown in Fig. 3 has proved very satisfactory in practice. There is a central block of numerical keys, which are set out as on a conventional calculator keyboard. To the right is a block of letter-keys to complete the hexadecimal set. To the left is a block of 4 command keys, GO, ABORT, MEMORY, TERMINATE. This arrangement brings the two most frequently used keys to the front of the keyboard. The prototype was built as part of an expandable system, so two additional keys were provided for when the board was etched, even though at that stage it had not been decided how they would be used. These keys connect pins $P$ and $Q$ to


Fig.3. The foil pattern for the Mk14 keyboard (full size).


## QUICK KEYBOARD

## PARTS LIST

PCB to pattern.
16 way $0.1^{\prime \prime}$ edge connector. 20 keyboard switches + tops. 2 keyboard switches and tops for options.
20 way ribbon cable.
ground $(0 \mathrm{~V})$ and have several possible uses:

- to provide inputs to Sense A and Sense B, making it possible to control the microprocessor while a program is running
- to control various peripheral devices
- to operate the automatic keying device to be described in a later article.
If you decide not to include these two keys, black out that part of the PCB design and omit pins $P, Q$ and Ground. Ground.


## Construction

A firm base is required for mounting the keys, so the keyboard should be constructed on fibre-glass board rather than on Srbp board. The most tedious part of construction is the drilling of the holes for the key terminals. Use a 1.6 mm drill for this and align the holes as accurately as you can. Slight inaccuracies show up on the finished keyboard as uneveness is in the rows of key tops, giving the board an unproffessional appearance. The holes for the connecting pins should be drilled with a 1 mm bit.

It has been found in practice that keys of the recommended type have a clean action, so no debouncing circuit is required. The connecting pins on the board are wired directly to the edge-connector, it is preferable to use ribbon cable. Thirteen wires are required (only 12 if you are not including the extra keys) so use 10 -way cable with 2 or 3 additional wires, or 20 -way cable with unwanted wires peeled away. For neatness and to keep the cable out of the way of the 'Reset' button and the display, the ribbon should be kept flush with the boards (Fig.1). Wires to the right-hand end of the row of connecting pins are cut progressively shorter and soldered in place in order. Similarly wires to the upper end of the edge-connector are shorter than those to the lower end. When soldering to the edge-connector, lay it on the bench beside the keyboard in the position which it will occupy when finally plugged on to the Mk-14 board.


A plan view of the prototype Mk-14 replacement keyboard. Note the standard calculator style layout.

## Mounting The Board

Details of mounting are shown in Fig.5. The original keyboard plate, legend sheet, contact sheet and separator are removed before mounting the Mk-14 board. Bolts pass through the four holes at the centre and right of the keyboard and through the four holes originally used to hold the Mk-14 keyboard. The left-hand end of the keyboard is supported on two further bolts.

The recommended key-switches are in three parts: the switch itself, a square white plastic key-top, and a cover of transparent plastic that clips over the key-top. The keytops are marked by using rub-down lettering. Capitals and numerals in 20 -point size are most suitable. For the command keys, you can use lettering or you may prefer to insert small squares of coloured paper - a different colour for each command. The transparent covers are then clipped over the tops and protect the lettering against wear.

If you are a keen handyman, you may choose to box in the whole unit, leaving holes for the blocks of keys, the display and the 'Reset' button. Remember to allow for ventilation in the region of the power regulator IC. On the other hand, a full view of 'the works' is not only more impressive but is perfectly acceptable for a development system of this kind, so there is no need to do anything further. Simply switch on and enjoy the feel of a smooth-acting full-size keyboard.


Fig.5. The mounting details for the new keyboard unit.


## NASCOM COLOUR GRAPHICS BOARD

## only $\mathbf{£ 2 2 . 5 0}$ in kit form

*Runs on minimum Nascom under T2, T4 or B-Bug.
*Genuine PAL encoder.
*8 background and 8 foreground colours.
*3072 addressable colour cells.
*Alpha numerics and colour graphics can be mixed.
*Simple to build, connect and implement.
*Complete with construction and software notes.
For use with a standard unmodified colour TV.

Just send $£ 22.50$ inclusive for a complete kit to:
INTRACEP EEECTRONCS LTD.
203 Picton Road, Liverpool. L15 4LG
Tel: 051-733-3042

STOP PRESS: Superboard Comparible

## COLOUR

 YOUR NASCOM!

## DAZZLING COLOUR GRAPHICS FOR NASCOM 1

Genuine bit-addressable "pixel" system for straightforward programming of pictorial or mathematical functions.
8 Colour display plus 8 colour independent background facility. Full documentation with FREE SOFTWARE: powerful sub-routines for vector generation, demonstration program for animated effects. All runs in Nascom 1 without expansion. Complete with UHF Colour Modulator for operation with normal colour TV set. Superior design allows connection to most other microprocessor systems - send us diagrams etc of your b \& w video circuitry for free advice. Don't be fooled by the price: this is a top quality product which will transform your computer.
NOW AVAILABLE FOR
LIMITED PERIOD AT


Dower House, Billericay Road, Vrsa Herongate, Brentwood Essex CM13 3SD.
Telephone: Brentwood (0277) 810244


## 24 TUNE DOOR CHIMES

DOOR TUNES 17.13 + VAT.


## T.V. GAMES

## PPOGRAMMABLE E

## COLOUR CARTRIDGE T.V. GAME

itp TV gane can he cembated to an oud raxere rac

 IV =.e

 , Ion games and the firs: camndge contauning ten sports qamet is inctuded tree with the consele Intrer tamtridges are currently avaligtie te etrable you io play such games as Grand Piox Motor Racing. Super Wrepout and Subnl Rider Finthen carnoges are to the released lotes this vea,
wivers Iang Bartle. Hunt the Sub and Tarqes. The console cames complete with two temorable poystick Slaver contenls 10 ehatie wou wo move in all hout crections
 hail serve and sacget life butions Olahe leatures nchude Geved aimiculty ofigp swiches, aulomatic on screen a. .re sabes and mlour couing on stores and ball dhace seunds am itarsmined throngh the IV's speaker an and achay zme cong blow


ROAD YACE - [8.87 $\div$ YAT
 SUPER WIPEOUT - 69.17 + VAT. STUNT RIDER - £12.16 + VAT Motorcyaie speed ereifs, fumbinu obsaracles. leazing vanous riws of LiD Te 74 buses ers NON. PROGEAMMABEIE TV GAMES
5 Game - COLOURSCORE II - $£ 1350$ + VAT. 10 Gant COLOUR SPORTSWORLD f2250 + YAT.

## CHESS COMPUTERS

STAR CHESS - E5S.09 - VAT
PLAY CHESS AGAINST YOUR PART NER.





 ew harevsions of urptadecalaliv and tharcit ant "E strikeby ol the gatme Not phty can pleces de dax exchange rocket tie wall ifs upoorunts the uris :omves Conitlete woll a frge liky mans aeagror, rull wistitura and twelve murns guarantah

GHESS CHALLENGEA 7 - fRS. 65 - VAT. PLAY CHESS AGAINST THE COMPUTER.
Tre snush, runvact, pumatie conspie can pe set to play al Stever differeng levels al ablity trom beginner to Enpen will oniry make resoanses which ober mtetratuonal shess rules Castunc. on passanc. and proremtinq a pawn are ial included as oard of the tembuter's praquanime if is
 Hewspepers or athenatively establish pout twn bognd mosion ane wath the cemuuse teact the posnions of all ances can be vethed by using the computor miemery feral shem
Petice melutes unis when wood gramed housmg, and Staunton design thess peces Complater pioys black or white and aganss nselt and tormes complete with e mans etaettor fond 17 munths gus rantee
OIME月 CMESS COMPUTERS IN DUR RANGE INELUDE CHESS CHAMPION - 6 LEVELS 477.39 + VAT.
CHESS CHALLENGER - 10 LEVELS E1蔡. 70 + VAT. BORIS - MULTT-LEVEL TALKING
DISPLAY E1E3.04 + VAT.

## DRAUGHTS COMPUTERS

CHECKER CHALLENGER 2 LEVELS $8 \mathbf{~} 43.00$ + VAT.	PAY DRALICHIS
The draumbs rompurier enstes you to shamen youl skils	
Eutave mur came and dav whereves you wan lif  	
cotmsuter incosghrses at ssothistcaled reluate, decasil	
FOR FREE BROCHURES - SEND S.A.E	
AJD DIRECT SUPPLIES LIMITED, Dept CT. 1102 Bellegrove Road	
Welling Kent 016300 Tot. 01.302	90

## 

## Apple II comes to Scotland

Why not call and see the fantastic Apple II the finast micro currently availabie. Demonstration without obligation.

## 16K <br> Disc drive with controller . . . . . . . . . . . . . . . . . . . . . . . . $\mathbf{£} 398$ <br> 16K add on (Max 2 giving 48 K total). . . . . . . . . . . . . . . . . . . £69 <br>  <br> Parallel I/F <br> Comms card <br> Applesoft firmware card <br> Centronics card with cable. <br> Hitachi 9 in. monitor.. <br> Hitachi 12 in. monitor. <br> up. 388 days by 1 ms intervals . . . . . . . . . . . . . . . . . . . . . . $£ 140$ <br> Pascal Language System now available for Apple II

f110
£132
£110

Editor, Compiler, Relocatable Assembler, System Utilities, etc Price including Language Discs, 16 K Memory Card, Documentation $\mathbf{E} 296$.
Note: Integer Basic, Floating Point Basic, and Pascal all on Discs supplied with package.

## STOP PRESS

SUPERCOLOUR FOR APPLE II. At last - top quality colour for your Apple. Brand new Supercolour board. Gives red, green, blue and sync, as totally independent TTL signals, thus eliminat ing all previous colour problems. The quality of colour using this method which drives the 3 colour guns of the CRT indepen dently is fantastic. Colour of text, low res. graphics and high res. graphics can be switched separately by the user, e.g. green text. Complete with $14^{\prime \prime}$ Sony monitor and boards for Apple II. $£ 440$.

WALTERS DOLPHIN HIGH-SPEED PRINTER
.f595 Intertube 2 VDU now in stock.
Software packages prepared by arrangement. For further details please write, phone or telex

All prices exclusive of VAT.

44 ST. ANDREW'S SQUARE, GLASGOW G1 5PL 041-552 6731
Tel. order welcome with Access and Barclaycard

Callers welcome


Now on Telex 777268. 24 Hours Service

## CLUB SURVEY

## A complete update on our club file <br> 17hen we published our Club Survey in July we made one or two errors and omissions owing to lack of communications from the clubs. This survey has been collated from the latest information that we have and if your club has not been included please write and tell us about it. We would like to extend our grateful thanks to all those clubs who have taken the time and trouble to keep us informed, please keep the information coming so we can continue to update our records.

## REGIONAL GROUPS

Avon

## BRISTOL COMPUTING CLUB

Leo Wallis,
6 Kilbernie Road,
Bristol,
Avon BS14 OHY
0272-832453
30 members, $£ 3$ sub, 3rd Wednesday monthly meetings, Independent club.

## BRUNEL COMPUTER CLUB

S.W. Rabone,

18 Castle Road, Worle,
Weston Super Mare,
Avon BS22 91W
0934-513068
25 members, $£ 2$ sub, Alternate Wednesday meetings, skilled and non skilled sub groups, use of Tech equipment.

## Cheshire

## CHESHIRE COMPUTING CLUB

W. Collins,

37 Garden Lane,
Chester,
Cheshire.

## Devon

EXETER AND DISTRICT AMATEUR COMPUTER CLUB
Doug Bates,
3 Station Road,
Pinhoe,
Exeter, Devon.
0392-69844
$£ 5$ sub, 2nd Tuesday monthly meetings, special interest groups.

Durham
CLEVELAND MICRO COMPUTER USERS GROUP J.H. Telford,

63 Raby Road,
Ferryhill,
Co. Durham.
2nd Tuesday monthly meeting, Software library, Junior section, Reading library, Bi-monthly newsletter.

## Essex

## AMATEUR COMPUTER CLUB

D. Ellis,
c/o 118 Cambridge Avenue,
Gidea Park,
Romford,
Essex RM2 2 RA
$£ 3.50$ sub, Many regional groups and specialist services.

## Gloucestershire

CHELTENHAM AMATEUR COMPUTER CLUB M.P. Pullin, 45 Merestones Drive, The Park, Cheltenham, Gloucestershire GL50 2SU

0242-25617
25 members, Free membership, Fourth Wednesday monthly meeting at NGCT, Prom programming, 6800 and 6809 systems.

## Hampshire

SOUTHAMPTON AMATEUR COMPUTER CLUB
Paul Dorey,
c/o Dept of Physiology,
The University,
Southampton,
Hampshire SO9 3TU
Paul Maddison Winchester 4433 ext. 6955
50 members, $£ 3$ sub, $£ 2$ for students and OAP, 1 st Wednesday monthly meeting except July-Sept, Special interest groups, Newsletter "Benchmark".

## Hertfordshire

## HARROW COMPUTER GROUP

Bazyle Butcher,
16 St. Peter's Close,
Bushey Heath,
Watford,
Hertfordshire W82 3LG
01-950 7068
40 members, Free membership, Alternate Wednesday meetings at Harrow College of FE or Travellers Rest, Kenton, Magazine library.

## Ireland

## BELFAST AMATEUR COMPUTER CLUB

John Peacocke,
22 Wheatfield Gardens,
Belfast 14.
0232-749379
30 members, Meetings held at end of month, Affiliated to UK ACC.

## COMPUTER EDUCATION SOCIETY OF IRELAND

Diarmuid McCarthy,
7 St. Kevin's Park, Kilmacud, Blackrock, Co. Dublin, Eire.
$£ 3$ sub plus $£ 1$ or $£ 1.50$ for regional groups.
Kent
MEDWAY AMATEUR COMPUTER AND ROBOTICS
ORG'N
$0634-56830$ or $0634-64121$
60 members, Usual meeting 2nd Wednesday monthly,
Specialists in E78 design, Details from "Accumulator"

## Lancashire

## Y AMCO

Nigel Sutcliffe, 1 Suncliffe Road, Higher Reedley,
Nr. Burnley,
Lancashire.
0282.67677.

## Leicestershire

## LEICESTERSHIRE PERSONAL COMPUTER CLUB

G.B. Foden,

11 Gaddesby Lane,
Rearsby,
Leicester,
Leicestershire.

066474-247
80 members, $£ 2$ sub, 2nd Monday monthly meetings, Lectures, Demonstrations, Systems available.

## London

## LONDON SCHOOL COMPUTER USERS CLUB

c/o Burlington Danes School,
Dane Building,
Du Cane Road,
Hammersmith,
London WI 2 UTY
Internal magazine.

## EAST LONDON AMATEUR COMPUTER CLUB

Jim Turner,
63 Millais Road,
London E11.
$£ 2.50$ sub, $£ 1.25$ for students, 3rd Tuesday monthly meetings.

## NORTH LONDON HOBBY COMPUTER CLUB

Robin Bradbeer
Dept of Electronics and Communications Engineering,
Polytechnic of North London,
Holloway Road,
London N7 8DB
$01-6072789$ ext. 2447 or 2172
120 members, $£ 10$ sub, $£ 2.50$ student sub, First Wednesday monthly meeting, Hardware Mondays - Software Thursdays weekly, Other specialist groups, Various systems, Access to college facilities, Newsletter "GIGO".

## SELMIC

John Williamson,
129 Greenvale Road,
Eltham Park,
London SE9 1AG
01-850 4195
150 members, 3rd Wednesday monthly meetings.

## SOUTHGATE COMPUTER CLUB

Paul Wooley,
Southgate Technical College,
High Street,
Southgate,
London N14 6BS.
01-886 6521
1st Wednesday and 3rd Thursday monthly meetings termtime only, Newsletter.

## Manchester

```
AMATEUR COMPUTER CLUB NORTHWEST GRJUP
Mrs. J. Lomas,
9 Crescent Court,
Alderfield Road,
Choriton,
Manchester 21.
```


## $061-8811933$

80 members, $£ 3.50$ sub, 1st and 3rd Thursday monthly meetings, Club library, Varian 620 machine, Prom eraser, Cheap components, Occasional newsletter, Course currently more planned.

## Merseyside

## MERSEYSIDE MICROCOMPUTER GROUP

J.S. Stout,

Dept. of Architecture,
Liverpool Polytechnic,
53 Victoria Street,
Liverpool L1 6EY
051-236 0598
130 members, $£ 2$ sub, $£ 1$ students, Last Thursday monthly meetings, Special interest groups, Newsletter.

## Middlesex

## RICHMOND COMPUTER CLUB

Robert Forster,
18A The Barons,

## St Margarets,

Twickenham,
Middlesex.
01-892 1873
18 members, 25 p per meeting, 2 nd Monday monthly meeting at Richmond Community Centre, Equipment supplied by members.

## Midlands

## WEST MIDLANDS AMATEUR COMPUTER CLUB

John Tracey,
100 Booth Close,
Crestwood Park,
Kingswinford,
West Midlands DY6 8SP
$0384-70097$
$£ 2$ sub, $£ 1$ students, 2 nd Tuesday monthly meetings, Newsletter.

## Nottinghamshire

NOTTINGHAM MICRO-COMPUTER CLUB
P.C. McQuoney, 28 Seaford Avenue, Wollaton, Nottingham, Nottinghamshire.

Keith Swainson (Membership), 9 Brayton Crescent, Bullwell, Nottingham, Notts. (enclose an SAE).

Nottingham 286709
60 members, $£ 3$ sub, $£ 1.50$ student sub, 1st Monday monthly meeting except Jan, Aug and Sept, Course at local poly, Special interest groups, Newsletter, Visitors 50p per meeting, Meetings at Trent Poly.

## Oxfordshire

## OXFORDSHIRE MICROCOMPUTER CLUB

Stephen Bird,
139 The Moors,
Kidlington,
Oxfordshire OX5 2AF
08675-6703 Evenings except Wednesdays
20 members, $£ 5$ sub, 2 nd , 3rd and 4th Wednesday monthly meetings, Courses available, Newsletter.

## Staffordshire

## THE AMATEUR COMPUTER CLUB OF NORTH STAFFS

I. Roll,

16 Hill Street,
Hednesford,
Staffordshire WS12 5DJ
05438-4363
20 members, $£ 3$ sub, 3rd Wednesday monthly meetings.

## Surrey

THAMES VALLEY AMATEUR COMPUTER CLUB
Brian Quarm,
25 Roundway, Camberley,
Surrey.
Camberley 22186
$£ 1$ sub, 1 st Thursday monthly meeting, Visiting speakers, Special interest groups.

## Sussex

## MACKENZIE MICRO CLUB

Howard Pilgrim,
42 Compton Road, Brighton,
Sussex BN1 5AN
0273-561982
31 members, $£ 2.50$ sub, Weekly meetings, PET system, Library, Newsletter.

## Wales

SWANSEA AND SOUTHWEST WALES ACC
Paul Griffiths,
1 Prescelli Road, Penlan,
Swansea SA5 8AF

## Swansea 583897

20 members, Free membership, Last Friday monthly meeting, Software exchange, Newsletter soon.

## GWENT AMATEUR COMPUTER CLUB <br> Peter Hesketh, <br> Ashlea, <br> Mynyddbach, Chepstow, Gwent.

Alan Beale Newport 50207. Alan Wood Cardiff 791435
60 members, $£ 1$ sub, Every Wednesday meeting, Club computer, Library, Lectures, Bi-annual newsletter.

## Yorkshire

SOUTH YORKSHIRE PERSONAL COMPUTING GROUP
Tony Rycroft,
88 Spinneyfield,
Moorgate,
Rotherham, South Yorkshire.
0709-74889 Evenings.
£3 sub, 2nd Wednesday monthly meetings.

## SPECIALIST GROUPS

## UK APPLE USERS GROUP

Dr. Tim Keen,
5 The Poultry,
Nottingham.
0602-583254.

## COSMAC USERS CLUB

James Cunningham,
7 Harrowden Court, Harrowden Road, Luton,
Bedfordshire LU2 OSR
0582-423934
35 members, Proposed software library, Newsletter.

## CP/M USER GROUP

Nick Hampshire, 41 Vincent Street, Yeovil,
Somerset.

## PDP 8 USERS GROUP

Nigel Dunn,
21 Campion Road, Widmer End, High Wycombe, Buckinghamshire.
0494-714483
50 members, Free membership, Full information on all ' 8 ' hardware, Software, Spares, Newsletter.

## PDP 11 USERS GROUP

Pete Harris,
119 Carpenter Way, Potters Bar,
Hertfordshire EN6 5QB

0707-52091
30 members, Free membership, Information service.

## HEATHKIT USER GROUP

John Smithson,
Heath (Gloucester) Ltd., Bristol Road, Gloucester GL2 6EE
0452-29451
Large worldwide membership, $£ 8$ fee plus $£ 4$ annual sub,
Software, hardware, technical advice, Quarterly-magazine
"REMARK".
UK INTEL MDS USERS GROUP
Lewis Hard,
29 Chaucer Road,
Bedford,
Bedfordshire,
0234-41685
100 members, Free membership, Annual meeting,
Newsletter.
ITHACA S100 USERS GROUP
Dave Weaver,
16 Etive Place,
Condorrat,
Cumbernauld,
By Glasgow G67 4JF
02367-36570
25 members, SAE for membership, Discount available, Promotes exchange of information and software.

MK14 SCMP USERS GROUP
Geoff Phillips,
8 Poolsford Road,
London NW9 6HP
01-200 6209
130 members, $£ 1$ sub, Newsletter.
INTERNATIONAL NASCOM MICROCOMPUTER CLUB
c/o Nascom Microcomputers Ltd.,
92 Broad Street,
Chesham,
Bucks.
02405-75155
2000 members, $£ 1$ registration, $£ 5$ sub, Program library, Newsletter.

## INDEPENDENT NASCOM USERS CLUB

Jason Twell,
15 Damside Street,
Lancaster,
Lancashire.
0524-33596
400 members, $£ 5$ sub, Software and hardware support, Bi -monthly newsletter.
UK PET USERS CLUB
Andrew Goltz,
Commodore Business Machines,
818 Leigh Road,
Slough, Berkshire.
Slough 74111
1.500 members, $£ 10$ subscription, Information on hardware and software, Programming hints all in newsletter.

## INDEPENDENT PET USERS GROUP

57 Clough Hall Road,
Kidsgrove,
Stock on Trent
Staffordshire,
600 members, $£ 6.50$ sub (1980), Local group organiser,
Bi -monthly newsletter.

## INDEPENDENT PET USERS GROUP SOUTH

John Nuttall,
56 West Street,
Shoreham by Sea,
Sussex BN4 5WG
50 members, £ 1.50 sub, 1st Wednesday monthly meeting, Discounts on hardware and software, Training course,
Newsletter.

## NORTHEAST PETS AND IPUG

lim Cocallis,
20 Worcester Road,
Newton Hall Estate,
Durham.
Durham 67045
40 members, $£ 5$ sub, 2nd and 3 rd Monday meets monthly, 16 PETS available, Hardware and software support,
Equipment discount, Newsletter.

## RESEARCH MACHINES USER GROUP

PO Box 75,
209 Cowley Road,
Oxford.
0865-49792.

## EXIDY SORCERER USERS GROUP

Andy Marshall,
Micro 44,
44 Arthurs Bridge Road,
Woking,
Surrey GU21 4NT
04862-66084
$£ 5$ sub, Program exchange, Newsletter.

## SORCERER PROGRAM EXCHANGE CLUB

Colin Morle,
32 Watchyard Lane,
Formby,
Nr. Liverpool.
070-48 72137
60 members, $£ 2$ sub, International membership, Newsletter.

TRITON USER GROUP
Nigel Stride,
Transam Ltd.,
12 Chapel Street,
London NW1.
$01-4028137$
1200 members, $£ 4$ sub, Software exchange, Newsletter.
BUCKINGHAMSHIRE TRS 80 USERS GROUP
Brian Pain,
40A, High Street,
Stony Stratford,
Buckinghamshire.
Newsletter.

## CHELMSFORD TRS 80 USER GROUP

Michael Dean,
22 Roughtons,
Galleywood,
Chelmsford,
Essex.
0245-76127
40 members, Free membership, Last week monthly meetings. Newsletter soon.

## SMALL PROCESSOR USER GROUP

J. Roger Knight, c/o Dept of Meterology, University of Reading,
Earley Gate,
Whiteknights,
Reading RG6 2AY
0734-85123 ext. 6348/6347
Free sub, 36 pence for data requests inc. SAE, Large amount of hardware data and designs, Possible newsletter soon.

## 6502 USERS WORKING PARTY

W.R. Wallenborn,

21 Argyll Avenue, Luton,
Bedfordshire LU3 1EG
0582-2697 evenings only.
6800 USER SUBGROUP
Eric Stancliffe,
Computer Laboratory,
University of Liverpool,
Brownlow Hill,
PO Box 147,
Liverpool L69 3BX.
051-709 6022 ext. 2955.
50 members, Free membership if MMG, 2nd Thursday
monthly meeting, Test equipment, Prom Programming.
77/68 USERS GROUP
c/o Newbear Computing Store,
40 Bartholomew Street,
Newbury,
Berkshire.
0635-30505
500 members, Free years sub on purchase then $£ 1.50$,
Quarterly newsletter.
9900 USERS GROUP
Chris Cadogan,
21 Thistle Downs,
Northway Farm,
Tewkesbury,
Gloucestershire GL2 20 8RE
20 members, Free membership, Software and data libraries.
We hope that we will be able to publish a regular update service for computer clubs. If any details relating to your club are missing or have changed since we last contacted you please write in and tell us. We will keep to the same format of presentation so you can easily index any additions.

## CLASSIFIED INFORMATION

Semi-Display:-<br>1-3 insertions - $£ 5.00$ per single column centimetre<br>4-11 insertions - $£ 4.50$ per s.c.c.<br>12 insertions - $£ 4.00$ per s.c.c.

## Classified:-

19 pence per word (minimum 25 words)
Box number $£ 1.00$ extra
ALL ADVERTISEMENTS IN THIS SECTION MUST BE PRE-PAID
Closing date: - 2nd Friday in month preceding publication Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request) Cheques and postal orders should be crossed and made payable to 'Computing Today'
CLASSIFIED ADS, COMPUTING TODAY, 145 CHARING CROSS ROAD, LONDON WC2H OEE
(Tel. 01-437.1002)


## INTENSIVE WEEKEND COURSES IN

BASIC
including hands-on mini computer operation.

This short intensive course is intended to instruct from minimal knowledge to an operational capability of computer programming in BASIC high level language. The course is fully residential from Friday evening to Sunday afternoon.
Option of non-residential weekend, weekday evening and weekday courses available if required

For further details of dates available, fees, etc. Phone (0401) 43139, or write to: Dept CT
CLEVELAND BUSINESS SERVICES Cleveland House, ROUTH Beverley, North Humberside

## DISCOUNT PETS

LATEST 8 K WITH LARGE KEYBOARD, $E 480$.
$16 \mathrm{~K} £ 560,32 \mathrm{~K} \mathbf{£ 6 6 0}, 2040$ Disc $\mathbf{\Sigma} \mathbf{6 8 0}$.
PROGRAMMERS TOOLKIT, £45.
CHALLENGER $14 \mathrm{~K} £ 330$, complete with
RF converter
Also Challenger 2 range at very low prices.
"TEXAS TI 99/4 $\mathbf{£ 8 9 0}$ with $13^{\prime \prime}$ colour Monitor*
The most advanced home computer delivery March 1980, order now.
AIM65 4K, cased, powered, Basic $\mathbf{£ 4 2 0}$.
SEAWELL expansion chassis, memories.
etc.

S-100 MEMORY $16 \mathrm{~K} \quad 2 \mathrm{MHz}$ FULLY
STATIC, assembled, tested - bargain, 6150.

COMPLETE S-100 SYSTEM WITH
Z.80 CPU, North Star double-density disk, 32 K memory $\mathbb{E 1 , 2 0 0 .}$
Also other S-100 products.
HIGH QUALITY FAST PRINTERS £450.
Full technical support from MAPCON enqineers.

Prices as per copy date. VAT extra
INTELIIGENT ARTEFACTS
Cambridge Rd., Orwell, Royston, Herts. Tel. Arrington 689

## COLOUR MODULATOR

## THE NEW UHEX 480 EPROM PROGRAMMER 2704 and 2708

Control programs for Z80, 8080, 6800 6500 . Please state machine.
Programs permit programming any length block into the eprom, so even unexpanded machines can now program eproms.
Needs only $+5 \mathrm{~V},+12 \mathrm{~V},-5 \mathrm{~V}$.
Host computers require a PIO (P|A) complete kit only $£ 35$ or ready built and tested $£ 5$ extra.

## PIO, PIA INTERFACE PANELS

Available for $Z 80 / 8080,6800 / 6500$

## THE uHEX 416 DELUXE EPROM PROGRAMMER

Push Button Selection for 2704 2708,2716 . Still only $£ 65$.
All prices inclusive. SAE for further information about these products.

## MICRO HEX COMPUTERS

2 Studley Rise, Trowbridge, Wilts.

## HEXADECIMAL KEYBOARD

£15
Tri-state output with data available strabe. De-bounced with 2 key roll over. Mk 14 KEYBOARD E11 Fits in place of original via edge connector.
KEYSWITCHES 50p
Transparent tops. Double and triple widths also available with labels.
SAE for more details. Mail Order only
|NTRON|P( $37 A$ Chiltem Av.
WD230G

## WORD - PROCESSOR

written by C.B.C. for
APPLE \& ITT 2020
Cass/Disc E20/£26 - Anadex, 779 etc.
Send Cash. Cheques, P.O. or Access/Barclay No.
for $E 23$ or 530 (incl. VAT and PEP) to:
MILDMAY ELECTRONICS (Dept C) 200 Moulsham St., Chelmsford, Essex

J. MORRISON (MICROS)   -FAST 4K BASIC for 6800 systems	
Hexadec	E9.00
On Epr	¢40.00
708 supplied send	your requirements. £13.75
- Eprom erasing se	60p each
Send S.A.E. for list	
All prices inclusive	\$7 SUMMERSELL
611186	LONDON S.E. 27

## PROMS PROMS PROMS

New PROMS supplied unprogrammed or programmed to your specifications. Your PROMS erased, reprogrammed or copied. Quick tumaround, low prices, e.g., 2708 450 n sec ).
New unprogrammed
$£ 7.50$
programmed
£10.75
Your 2708 erased
£0.75
reprogrammed $£ 3.25$ copied £1.50 Prices include VAT at $15 \%$. Add $35 p$ P\&P. SAE for further details, specifying type of PROM.
Winchester Technology Ltd., 21 Malibres Road, Eastleigh, Hants. SO5 1DS.

17 Programmes plus useful information, including a list of Z280 opcodes in numerical order. Mostly for unexpanded systems.
Only $£ 3.50$
from most computer stores or direct from Merseygide Nascom User Group lo Samuel House
Taylor Street
iverpool $155 A D$
(Please add 30p p\&p if ordering by mail)

## 50 Hz SUPERBOARDS BRITISH MODEL

 from $£ 190+$ VATFully built tested and set up Authorised dealer backup C.T.S. 1 Higher Calderbrook, Littleborough, Lancs. Tel. Littleborough 79332 anytime

FULLSIZE DISPLAY for Mk14. Replace calculator display with common, half inch FND 500 displays. Printed circuit board and simple connections supplied, £2.95. Rayner, 'Kismet', High Street, Colnbrook, Bucks.

TRITON USERS, help, L6 Basic Prom listing required ( 18 MHz version). Phone: Stevenage 62680 anytime.

TRS 80 16K Level 2. Complete with video display, cassette, recorder, expansion interface and disc drive. Perfect working order, with all cables, manuals, etc. $£ 850$. Phone Ingrebourne 40451.

OHIO SCIENTIFIC CHALLENGER 1P 8 K RAM, UK power supply, uhf modulator plus manuals, plus software. As new, £300. Ruislip 72852.

MOTOROLA MEK D2 for sale. Assembled and working, with full documentation. Also ASCII keyboard (upper case), can be interfaced with above. $£ 110$ complete. Telephone Johnson 099-389-318.

MK14 16K expansion system; fully static; 250 or $450 \mathrm{n} \sec 2114$ and 2708 . S.A.E. for details; C. Hardy, 36, Park Street, Northwich, Cheshire.

NORTHERN IRELAND - NASCOM range now available. Nascom I kits and expansion now in stock, Nascom 2 on order. Both available built and tested. We have books cassettes, etc. Nascom I on demonstration at P \& O Computers, 81 Dublin Road, Belfast. Phone (0232) 22010, 621706 evenings.

PET PROGRAMS WANTED. Absolutely anything considered. Games, utilities, scientific, business. Send details and price. Alan Yates, Gazette, Sutton Springs Wood, Chesterfield.

TRITON, cased, full board RAM, RS 232 Interface, V5.1 monitor and L5.1 Basic, Software, etc. $£ 350$. Also expansion Motherboard, 550 . Telephone Andover 66687.

UK101. Full 8K RAM, 8K Basic. Built, tested and running to professional standards, at price of kit. With twenty programs. £310. Phone 01-997-9437.

MEMORIES 2708 £6.80; $1702 \mathrm{f6.20;} 2114$ 450 ns $£ 5.40 ; 2102450 \mathrm{~ns} 90 \mathrm{p}$ or 8 for $\ddagger 7.00$ add 40 p P \& P. Diskettes 5.252 for $£ 5.50,10$ for $£ 25$ inc P \& P. Elf kit ideal for beginners $£ 77$ inc P \& P. All new, factory fresh. SAE for list, J. Penman, 8 Elliothill Street, Dunfermline, Fife.

STEPPING MOTOR DRIVES: $0.5 \mathrm{amps} /$ phase, $£ 17.4$ amps/phase, $£ 21$. Motors 16 oz . in., $£ 15$. Send for details, R. Harden, 24 Belvoir Avenue, Trentham, Stoke-onTrent.

NASCOM I, 8K expansion, B-BUG, full working order in neat Verocase, with documentation and games cassette, $£ 275$ ono. Tenbury Wells (Worcs) 810015. Evenings only.

EXTENDED NASCOM-1 with 16 K memory and vero frame, working with games tape, $£ 300$. P. Moore, 34 Roseneath Road, Bolton. GMC buyer inspects and collects.

FOR SALE. Asr 33, RS232/Modem, Data Dynamics, on stand with interface cable, in excellent condition. $£ 450$ OVNO. Ruislip 72852 after 6.30 pm .

INTEL ICE 80, unused kit from failed project, surplus to requirements. Best offer or large PET wanted. W.H.Y. Box No. 50, Computing Today, 145, Charing Cross Road, London, WC2H OEE.

WANTED. Back issues Nos. 1,2,3 and 5.1 Dunchurch Close, Balsall Common. Nr. Coventry. West Midlands. Tel: Berkswell 34332.

PET COMPUTER WANTED. Also printer ETS, Phone evenings after 7.30 , Earlswood (Warks) 3423.
TRITON USERS, help, L6 Basic Prom listing required ( 18 mhz version) Phone Stevenage 62680 antime.

## "LOSIC? - I SON'T KNOW WHY IT SHOULD SHOW ANY - YOU NEVER DO!"

## PET COSTS LESS AT COMP and it's

 a pedigree8K - Comes complete integral cassette deck
Full manuals
THE TRS80
(Special Scoop) Low Priced, Ready to Go ! supplied. Powerful 8 K Microsoft Basic in ROM
Masses of software available - $\mathbf{\Sigma 4 9 9}+\mathrm{VAT}$ 16 K - Same as above but with new improved keyboard and cassette supplied as extra. Machine code monitor on board so you can program in 6502 machine code - $\mathbf{5 5 9 0}+$ VAT
32 K - for a little extra get 32 K memory providing greater storage capacity for programs or data - $\mathbf{8} 900+$ VAT External Cassette deck for $8 \mathrm{~K}, 16 \mathrm{~K}$
complete with cable and connector

## FULL RANGE OF PETSOFT SOFTWARE NOW AVAILABLE



THE NEW ITT APPLE (2020)


* Full colour - UHF output * Audio cassette tape interface * Up to 48 K RAM on board * BASIC in ROM (graphics commands include COLOUR = VLIN, HLIN, PLOT and SCRN) * Built in loudspeaker * Buckets of software available * Disk System (110K byte per drive - includes controller)
only £425 + VAT EX•STOCK


## viden $10 \square$

12" BLACK \& WHITE
LOW COST


## MODULATORS UHF Channel 36

Standard 6 meg band width $£ 2.25$ High Quality 8 meg band width $£ 4.90$

## COMP PRO Mixer

## Professional audio

mixer that you can build yourself and save over $£ 100$.


6 into 2 with full equalization and echo, cve and pan controls.
All you need for your own
recording studio is a stereo tape or cassette recorder.
This superb mixer kit has slider faders, level meters and additional auxilliary inputs.
Only $£ 99.90$ plus VAT for complete kit Plus FREE power supply valued at $£ 25.00$

Ideal for
DISCOS STAGE MIXING HOME STUDIOS AND MANY OTHER APPLICATIONS

## SHORT C12 CASSETTES FOR

 COMPUTER PROGRAMMES 10 for $£ 4.00$HIRE PURCHASE AVAILABLE THROUGH HODGE FINANCE.
SEND S.A.E. FOR APPLICATION FORM.

## P．E．AUGUST，SEPTEMBER

 OCTOBER 1979COMPUKIT UK101
SAMPLE TAPE WITH EXTENDED

## LOW COST

 SUPERBOARDThe Compukit UK 101 has
everything a one board＇superboard＇should have
＊Uses ultra－powerful 6502 microprocessor
＊ 50 Hz Frame refrest for steady clear picture （USA products with 60 Hz trame refresh always
＊ 48 chars by 16 lines
system providing high speed access to mapped vided
enabling animated games and graphs
＊Extensive 256 character set which includes full upper and lower case alphanumerics．Greek symbols characters enabling you to form aimost any shape you characters enabling you to torm
＊Video output and UHF Highgrade modulator $(8 \mathrm{Mz}$ Bandwidth）which connects direct to the aerial sockel of your TV Channel 36 UHF
F Fully stabilised 5 V nower
＊Fully stabilised 5 V power supply including trans ormer on board
＊Standard KANSAS city lape interlace providing high reliability program storage－use on any ＊ 4 K user RAM expandable to 8 K on board $£ 49$
＊ 40 line expansion interface socket on board for attachment of extender card containing 24 K RAM and ＊ 6502 machine code accessible through
＊ 2 K machine code monitor on board hrough powerfu
＊High quality thru plated PC
＊Righ quality
mounted on sockets
＊Protessional 52 Key keyboard in 3 colours－soft ware polled meaning that all debouncing and key decoding done in sorwat
COMMANDS
STATEMENTS
GOTO GOSUB IF GOTO DIM THEN END FOR NEXT ON GOTO ON GOSUB POKE PRINT REAL

EXPRESSIONS
OPERATORS

+ NOT AN
VARIABLES
A．BC $Z$ and two leller variables

－BK Microsoft Basic means conversion to and from Pet，Apple and Sorcerer easy． Many compatible programs already in print SPE Erases linacters
（3）Erases line being typed，then provides rriage return，line feed．

Erases last character typed
CR Carriage Return－must be at the end of each line．

Separates statements on a line
CONTROL／C Execution or printing
S interrupted at the end of a line．
BREAK IN LINE XXXX ＂．is printed，in dicaring line number of next statement to be executed or printed
made to command mode it an input state made to command mode．It an input state ment is encountered either anothe
CONTROLIO is typed or an error occurs Equivalent to PRINT

## COLOUR ADD－ON CARD AVAILABLE SOON

Enables you to choose your foreground the background colour anywhere on the screen．Flash any character on the screen at will．Full documentation and parts in kit form．


## THE ATARI VIDEO COMPUTER SYSTEM

Atari＇s Video Computer System now offers more than 1300 different game variations and options in twenty great Game Program ${ }^{T M}$ cartridges！ Have fun while you sharpen your mental and physical coordination． You can play rousing，challenging，sophisticated video games，the games that made Atari famous．
 You＇ll have thrill after thrill，whether you＇re in the thick of a dogfight，screeching around a racetrack or dodging asteroids in an alien galaxy．With crisp bright color（on color TV）and incredible，true－to－ life sound effects．With special circuits to protect your TV．


Cartridges now available in stock：


Close to New Barnet BR Station－Moorgate Line．

## SGB F SewBear. Components





## MEMORIES

## 2708

4116 (16K DYNAMIC)

- 2102-1

2102L-1
2112
2114 (INTEL)

## ONASCOM II £295.00 <br> * 2 K MONITOR <br> * 8 K MICROSOFT BASIC

* 1K VIDEO RAM * 8K STATIC RAM/2708 EPROM
* 1K USER RAM


### 77.68 PricesЯ1ashed!

Bearbag 1 77-68 CPU KIT . . . . . . . $£ 35.00$
Bearbag 5 77-68 4K RAM KIT . . . . . $£ 55.00$
Bearbag 6 77-68 MON 1 KIT . . . . . . $£ 37.50$
Bearbag 12 77-68 V.D.U. KIT . . . . . £42.50
Bearbag 13 77-68 MON 2 KIT . . . . . . £47.50
Bearbag 16 77-68 EPROM BOARD KIT . . £21.50
Bearbag 17 77-68 PIO BOARD KIT . . . . £40.00
Bearbag 23 77-68 32K DYNARAM KIT . . $£ 75.50$

## IIM PAK

## FOR RESISTORS CAPACITORS, CMOS, REGULATORS



## * SUPERBOARD II ^

NEWBEAR SYSTEMS FOR APPLE II

* 8K BASIC * 4K USER RAM
* KANSAS CITY CASSETTE INTERFACE
* 6502 BASED
* BUILT AND TESTED
\& $£ 188.00+$ VAT EXSTOCK

CALLERS AND MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505 CiALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport Tel: 0614912290


[^0]:    DISPLAY
    157 E97 CD 3500 CALL KDEL
    158 E9A CD 3500 CALL KDEL

[^1]:    Please send me:-
    ...Computer Programming in BASIC (4 books) @ £7.50
    Design of Digital Systems (6 books) @ $£ 11.50$
    All prices include worldwide surface mailing costs (airmail extra) IF YOUR ORDER EXCEEDS £15, DEDUCT £2
    I enclose a cheque/PO payable to Cambridge Learning Enterprises for $£$.
    or please charge my Access/Barclaycard/Diners Club etc. account no.
    Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc Eire) send a bank draft in sterling drawn on a London bank, or quote credit card and number.
    Name
    Address

    Cambridge Learning Enterprises, Unit 41, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.

